Olimpiade Zone : Sistem Persamaan

Berikut ini adalah kumpulan soal mengenai Sistem Persamaan tingkat olimpiade. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Terima kasih.

No. 1

Diketahui xx, yy, zz dan tt adalah bilangan real tidak nol dan memenuhi persamaan
x+y+z=tx+y+z=t
1x+1y+1z=1t\dfrac1x+\dfrac1y+\dfrac1z=\dfrac1t
x3+y3+z3=10003x^3+y^3+z^3=1000^3
Nilai dari x+y+z+tx+y+z+t adalah....
\(\eqalign{ \dfrac1x+\dfrac1y+\dfrac1z&=\dfrac1t\\[4pt] \dfrac{xy+yz+xz}{xyz}&=\dfrac1t\\[4pt] xy+yz+xz&=\dfrac{xyz}t}\)

\(\eqalign{ x^3+y^3+z^3&=(x+y+z)^3-3(x+y+z)(xy+yz+xz)+3xyz\\ 1000^3&=t^3-3\left(\cancel{t}\right)\left(\dfrac{xyz}{\cancel{t}}\right)+3xyz\\ 1000^3&=t^3-\cancel{3xyz}+\cancel{3xyz}\\ t&=10}\)

\(\eqalign{ x+y+z+t&=2t\\ &=2(1000)\\ &=\boxed{\boxed{2000}}}\)

No. 2

Diketahui (x,y)(x,y) memenuhi dua persamaan :
x33x2+5x+2016=2017x^3-3x^2+5x+2016=2017
y33y2+5y+2017=2022y^3-3y^2+5y+2017=2022
Carilah nilai dari 116 ⁣log(x+y){^{\frac1{16}}\negmedspace\log(x+y)}
\(\eqalign{ x^3-3x^2+5x+2016&=2017\\ (x-1)^3+2x&=0\\ (x-1)^3+2(x-1)+2&=0 }\)
Misal p=x1p=x-1
p3+2p+2=0p^3+2p+2=0

\(\eqalign{ y^3-3y^2+5y+2017&=2022\\ (y-1)^3+2(y-1)-2&=0 }\)
Misal q=y1q=y-1
q3+2q2=0q^3+2q-2=0

\(\eqalign{ p^3+2p+2&=0\\ q^3+2q-2&=0&\qquad+\\\hline p^3+q^3+2(p+q)&=0\\ (p+q)\left(p^2-pq+q^2\right)+2(p+q)&=0\\ (p+q)\left(p^2-pq+q^2+2\right)&=0\\ p+q&=0\\ x-1+y-1&=0\\ x+y&=2 }\)

No. 3

pp, qq, dan rr adalah tiga bilangan real yang memenuhi persamaan
p+q+r=9p+q+r=9
pqr=10pqr=10
r2p2q2=13r^2-p^2-q^2=13
Nilai rr yang bulat yang memenuhi persamaan tersebut adalah ....
\(\eqalign{ r^2-p^2-q^2&=13\\ p^2+q^2&=r^2-13 }\)

\(\eqalign{ p+q+r&=9\\ (p+q+r)^2&=9^2\\ p^2+q^2+r^2+2(pq+qr+pr)&=81\\ r^2-13+r^2+2(pq+qr+pr)&=81\\ 2r^2+2(pq+qr+pr)&=94\\ pq+qr+pr&=47-r^2 }\)

pp, qq, dan rr merupakan akar-akar dari:

\(\eqalign{ x^3-9x^2+\left(47-r^2\right)x-10&=0\\ r^3-9r^2+\left(47-r^2\right)r-10&=0\\ r^3-9r^2+47r-r^3-10&=0\\ 9r^2-47r+10&=0\\ (9r-2)(r-5)&=0 }\)

r=29r=\dfrac29 atau r=5r=5

No. 4

Diketahui aa, bb, dan cc adalah tiga bilangan real yang memenuhi persamaan
a2bc=7a^2-bc=7
b2+ac=7b^2+ac=7
c2+ab=7c^2+ab=7
maka a2+b2+c2=a^2+b^2+c^2= ....
\(\eqalign{ a^2-bc&=b^2+ac\\ a^2-b^2&=ac+bc\\ (a+b)(a-b)&=(a+b)c\\ a-b&=c\\ a&=b+c }\)

\(\eqalign{ a^2-bc&=7\\ b^2+ac&=7\\ c^2+ab&=7&\qquad+\\\hline a^2+b^2+c^2+ab+ac-bc&=21\\ a^2+b^2+c^2+a(b+c)-bc&=21\\ a^2+b^2+c^2+a(a)-bc&=21\\ a^2+b^2+c^2+a^2-bc&=21\\ a^2+b^2+c^2+7&=21\\ a^2+b^2+c^2&=14 }\)

No. 5

Diberikan sistem persamaan
x+3y+2w=4444x+3y+2w=4444,
6x+2y=88886x+2y=8888,
6z+3w=66666z+3w=6666,
Tentukan hasil dari x+y+z+wx+y+z+w
x+3y+2w=44446x+2y=8888:26z+3w=6666×23\begin{aligned} x+3y+2w&=4444\\ 6x+2y&=8888&\color{red}{:2}\\ 6z+3w&=6666&\color{red}{\times\dfrac23} \end{aligned}

x+3y+2w=44443x+y=44444z+2w=4444+4x+4y+4z+4w=34444x+y+z+w=31111=3333\begin{aligned} x+3y+2w&=4444\\ 3x+y&=4444\\ 4z+2w&=4444&\color{red}{+}\\\hline 4x+4y+4z+4w&=3\cdot4444\\ x+y+z+w&=3\cdot1111\\ &=\boxed{\boxed{3333}} \end{aligned}

No. 6

\begin{cases} a(b+c-5)=7\\ b(a+c-5)=7\\ a^2+b^2=50 \end{cases} Carilah nilai (a,b,c)(a,b,c)
a(b+c5)=7ab+ac5a=7\begin{aligned} a(b+c-5)&=7\\ ab+ac-5a&=7 \end{aligned}

b(a+c5)=7ab+bc5b=7\begin{aligned} b(a+c-5)&=7\\ ab+bc-5b&=7 \end{aligned}

ab+ac5a=7ab+bc5b=7(ab)c5(ab)=0(ab)(c5)=0\begin{aligned} ab+ac-5a&=7\\ ab+bc-5b&=7\qquad-\\\hline (a-b)c-5(a-b)&=0\\ (a-b)(c-5)&=0 \end{aligned}
  • Untuk a=ba=b
    a2+b2=50a2+a2=502a2=50a2=25a=±5\begin{aligned} a^2+b^2&=50\\ a^2+a^2&=50\\ 2a^2&=50\\ a^2&=25\\ a&=\pm5 \end{aligned}
    • Untuk a=b=5a=b=5
      a(b+c5)=75(5+c5)=75c=7c=75\begin{aligned} a(b+c-5)&=7\\ 5(5+c-5)&=7\\ 5c&=7\\ c&=\dfrac75 \end{aligned}
      (a,b,c)=(5,5,75)(a,b,c)=\left(5,5,\dfrac75\right)
    • Untuk a=b=5a=b=-5
      a(b+c5)=75(5+c5)=75(c10)=75c+50=75c=43c=435\begin{aligned} a(b+c-5)&=7\\ -5(-5+c-5)&=7\\ -5(c-10)&=7\\ -5c+50&=7\\ -5c&=-43\\ c&=\dfrac{43}5 \end{aligned}
      (a,b,c)=(5,5,435)(a,b,c)=\left(-5,-5,\dfrac{43}5\right)
  • Untuk c=5c=5
    a(b+c5)=7a(b+55)=7ab=7b=7a\begin{aligned} a(b+c-5)&=7\\ a(b+5-5)&=7\\ ab&=7\\ b&=\dfrac7a \end{aligned}

    a2+b2=50a2+(7a)2=50a2+49a2=50a4+49=50a2a450a2+49=0(a21)(a249)=0\begin{aligned} a^2+b^2&=50\\ a^2+\left(\dfrac7a\right)^2&=50\\ a^2+\dfrac{49}{a^2}&=50\\ a^4+49&=50a^2\\ a^4-50a^2+49&=0\\ \left(a^2-1\right)\left(a^2-49\right)&=0 \end{aligned}
    Untuk a2=1a^2=1 maka a=±1a=\pm1 dan b=±7b=\pm7
    (a,b,c)={(1,7,5),(1,7,5)}(a,b,c)=\{(-1,-7,5),(1,7,5)\}
    Untuk a2=49a^2=49 maka a=±7a=\pm7 dan b=±1b=\pm1
    (a,b,c)={(7,1,5),(7,1,5)}(a,b,c)=\{(-7,-1,5),(7,1,5)\}

No. 7

Diketahui sistem persamaan a+3b+2d=8{a+3b+2d=8}, 6a+2b=8{6a+2b=8}, dan 6c+3d=12{6c+3d=12}. Maka nilai a+b+c+d={a+b+c+d=}...
6a+2b=8:23a+b=4\begin{aligned} 6a+2b&=8\qquad\color{red}:2\\ 3a+b&=4 \end{aligned}

6c+3d=12×234c+2d=8\begin{aligned} 6c+3d&=12\qquad\color{red}\times\dfrac23\\ 4c+2d&=8 \end{aligned}

a+3b+2d=83a+b=44c+2d=8+4a+4b+4c+4d=20a+b+c+d=5\begin{array}{rcrcrcrcl} a&+&3b&+&&&2d&=&8\\ 3a&+&b&&&&&=&4\\ &&&&4c&+&2d&=&8\qquad\color{red}+\\\hline 4a&+&4b&+&4c&+&4d&=&20\\ a&+&b&+&c&+&d&=&\boxed{\boxed{5}} \end{array}

No. 8

Jika begin{cases}2a^2+2007a+3=0\3b^2+2007b+2=0\end{cases} dan ab1{ab\neq1}, tentukan ab\dfrac{a}b
2a2+2007a+3=0×b3b2+2007b+2=0×a\begin{aligned} 2a^2+2007a+3&=0\qquad&\color{red}{\times b}\\ 3b^2+2007b+2&=0\qquad&\color{red}{\times a} \end{aligned}

2a2b+2007ab+3b=03ab2+2007ab+2a=02a2b3ab2+3b2a=0ab(2a3b)+3b2a=0(ab1)(2a3b)=0\begin{aligned} 2a^2b+2007ab+3b&=0\\ 3ab^2+2007ab+2a&=0\qquad&\color{red}{-}\\[-3pt]\hline\\[-12pt] 2a^2b-3ab^2+3b-2a&=0\\ ab(2a-3b)+3b-2a&=0\\ (ab-1)(2a-3b)&=0 \end{aligned}
  • ab1=0ab-1=0
    ab=1ab=1 TM
  • 2a3b=02a-3b=0
    2a=3bab=32\begin{aligned} 2a&=3b\\ \dfrac{a}b&=\boxed{\boxed{\dfrac32}} \end{aligned}

No. 9

Jika {2017a2+2018a+2019=02019b2+2018b+2017=0 dan ab1{ab\neq1}, tentukan ab\dfrac{a}b
2017a2+2018a+2019=0×b2019b2+2018b+2017=0×a\begin{aligned} 2017a^2+2018a+2019&=0\qquad&\color{red}{\times b}\\ 2019b^2+2018b+2017&=0\qquad&\color{red}{\times a} \end{aligned}

2017a2b+2018ab+2019b=02019ab2+2018ab+2017a=02017a2b2019ab2+2019b2017a=0ab(2017a2019b)(2017a2019b)=0(ab1)(2017a2019b)=0\begin{aligned} 2017a^2b+2018ab+2019b&=0\\ 2019ab^2+2018ab+2017a&=0\qquad&\color{red}{-}\\[-3pt]\hline\\[-12pt] 2017a^2b-2019ab^2+2019b-2017a&=0\\ ab(2017a-2019b)-(2017a-2019b)&=0\\ (ab-1)(2017a-2019b)&=0 \end{aligned}
  • ab1=0ab-1=0
    ab=1ab=1 TM
  • 2017a2019b=02017a-2019b=0
    2017a=2019bab=20192017

Related Posts

0 Response to "Olimpiade Zone : Sistem Persamaan"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel