Olimpiade Zone : Sistem Persamaan

Berikut ini adalah kumpulan soal mengenai Sistem Persamaan tingkat olimpiade. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Terima kasih.

No. 1

Diketahui x, y, z dan t adalah bilangan real tidak nol dan memenuhi persamaan
x+y+z=t
\dfrac1x+\dfrac1y+\dfrac1z=\dfrac1t
x^3+y^3+z^3=1000^3
Nilai dari x+y+z+t adalah....
\(\eqalign{ \dfrac1x+\dfrac1y+\dfrac1z&=\dfrac1t\\[4pt] \dfrac{xy+yz+xz}{xyz}&=\dfrac1t\\[4pt] xy+yz+xz&=\dfrac{xyz}t}\)

\(\eqalign{ x^3+y^3+z^3&=(x+y+z)^3-3(x+y+z)(xy+yz+xz)+3xyz\\ 1000^3&=t^3-3\left(\cancel{t}\right)\left(\dfrac{xyz}{\cancel{t}}\right)+3xyz\\ 1000^3&=t^3-\cancel{3xyz}+\cancel{3xyz}\\ t&=10}\)

\(\eqalign{ x+y+z+t&=2t\\ &=2(1000)\\ &=\boxed{\boxed{2000}}}\)

No. 2

Diketahui (x,y) memenuhi dua persamaan :
x^3-3x^2+5x+2016=2017
y^3-3y^2+5y+2017=2022
Carilah nilai dari {^{\frac1{16}}\negmedspace\log(x+y)}
\(\eqalign{ x^3-3x^2+5x+2016&=2017\\ (x-1)^3+2x&=0\\ (x-1)^3+2(x-1)+2&=0 }\)
Misal p=x-1
p^3+2p+2=0

\(\eqalign{ y^3-3y^2+5y+2017&=2022\\ (y-1)^3+2(y-1)-2&=0 }\)
Misal q=y-1
q^3+2q-2=0

\(\eqalign{ p^3+2p+2&=0\\ q^3+2q-2&=0&\qquad+\\\hline p^3+q^3+2(p+q)&=0\\ (p+q)\left(p^2-pq+q^2\right)+2(p+q)&=0\\ (p+q)\left(p^2-pq+q^2+2\right)&=0\\ p+q&=0\\ x-1+y-1&=0\\ x+y&=2 }\)

No. 3

p, q, dan r adalah tiga bilangan real yang memenuhi persamaan
p+q+r=9
pqr=10
r^2-p^2-q^2=13
Nilai r yang bulat yang memenuhi persamaan tersebut adalah ....
\(\eqalign{ r^2-p^2-q^2&=13\\ p^2+q^2&=r^2-13 }\)

\(\eqalign{ p+q+r&=9\\ (p+q+r)^2&=9^2\\ p^2+q^2+r^2+2(pq+qr+pr)&=81\\ r^2-13+r^2+2(pq+qr+pr)&=81\\ 2r^2+2(pq+qr+pr)&=94\\ pq+qr+pr&=47-r^2 }\)

p, q, dan r merupakan akar-akar dari:

\(\eqalign{ x^3-9x^2+\left(47-r^2\right)x-10&=0\\ r^3-9r^2+\left(47-r^2\right)r-10&=0\\ r^3-9r^2+47r-r^3-10&=0\\ 9r^2-47r+10&=0\\ (9r-2)(r-5)&=0 }\)

r=\dfrac29 atau r=5

No. 4

Diketahui a, b, dan c adalah tiga bilangan real yang memenuhi persamaan
a^2-bc=7
b^2+ac=7
c^2+ab=7
maka a^2+b^2+c^2= ....
\(\eqalign{ a^2-bc&=b^2+ac\\ a^2-b^2&=ac+bc\\ (a+b)(a-b)&=(a+b)c\\ a-b&=c\\ a&=b+c }\)

\(\eqalign{ a^2-bc&=7\\ b^2+ac&=7\\ c^2+ab&=7&\qquad+\\\hline a^2+b^2+c^2+ab+ac-bc&=21\\ a^2+b^2+c^2+a(b+c)-bc&=21\\ a^2+b^2+c^2+a(a)-bc&=21\\ a^2+b^2+c^2+a^2-bc&=21\\ a^2+b^2+c^2+7&=21\\ a^2+b^2+c^2&=14 }\)

No. 5

Diberikan sistem persamaan
x+3y+2w=4444,
6x+2y=8888,
6z+3w=6666,
Tentukan hasil dari x+y+z+w
\(\begin{aligned} x+3y+2w&=4444\\ 6x+2y&=8888&\color{red}{:2}\\ 6z+3w&=6666&\color{red}{\times\dfrac23} \end{aligned}\)

\(\begin{aligned} x+3y+2w&=4444\\ 3x+y&=4444\\ 4z+2w&=4444&\color{red}{+}\\\hline 4x+4y+4z+4w&=3\cdot4444\\ x+y+z+w&=3\cdot1111\\ &=\boxed{\boxed{3333}} \end{aligned}\)

No. 6

\begin{cases} a(b+c-5)=7\\ b(a+c-5)=7\\ a^2+b^2=50 \end{cases} Carilah nilai (a,b,c)
\(\begin{aligned} a(b+c-5)&=7\\ ab+ac-5a&=7 \end{aligned}\)

\(\begin{aligned} b(a+c-5)&=7\\ ab+bc-5b&=7 \end{aligned}\)

\(\begin{aligned} ab+ac-5a&=7\\ ab+bc-5b&=7\qquad-\\\hline (a-b)c-5(a-b)&=0\\ (a-b)(c-5)&=0 \end{aligned}\)
  • Untuk a=b
    \(\begin{aligned} a^2+b^2&=50\\ a^2+a^2&=50\\ 2a^2&=50\\ a^2&=25\\ a&=\pm5 \end{aligned}\)
    • Untuk a=b=5
      \begin{aligned}
      a(b+c-5)&=7\\
      5(5+c-5)&=7\\
      5c&=7\\
      c&=\dfrac75
      \end{aligned}

      (a,b,c)=\left(5,5,\dfrac75\right)
    • Untuk a=b=-5
      \(\begin{aligned} a(b+c-5)&=7\\ -5(-5+c-5)&=7\\ -5(c-10)&=7\\ -5c+50&=7\\ -5c&=-43\\ c&=\dfrac{43}5 \end{aligned}\)
      (a,b,c)=\left(-5,-5,\dfrac{43}5\right)
  • Untuk c=5
    \(\begin{aligned} a(b+c-5)&=7\\ a(b+5-5)&=7\\ ab&=7\\ b&=\dfrac7a \end{aligned}\)

    \(\begin{aligned} a^2+b^2&=50\\ a^2+\left(\dfrac7a\right)^2&=50\\ a^2+\dfrac{49}{a^2}&=50\\ a^4+49&=50a^2\\ a^4-50a^2+49&=0\\ \left(a^2-1\right)\left(a^2-49\right)&=0 \end{aligned}\)
    Untuk a^2=1 maka a=\pm1 dan b=\pm7
    (a,b,c)=\{(-1,-7,5),(1,7,5)\}
    Untuk a^2=49 maka a=\pm7 dan b=\pm1
    (a,b,c)=\{(-7,-1,5),(7,1,5)\}

No. 7

Diketahui sistem persamaan {a+3b+2d=8}, {6a+2b=8}, dan {6c+3d=12}. Maka nilai {a+b+c+d=}...
\(\begin{aligned} 6a+2b&=8\qquad\color{red}:2\\ 3a+b&=4 \end{aligned}\)

\(\begin{aligned} 6c+3d&=12\qquad\color{red}\times\dfrac23\\ 4c+2d&=8 \end{aligned}\)

\(\begin{array}{rcrcrcrcl} a&+&3b&+&&&2d&=&8\\ 3a&+&b&&&&&=&4\\ &&&&4c&+&2d&=&8\qquad\color{red}+\\\hline 4a&+&4b&+&4c&+&4d&=&20\\ a&+&b&+&c&+&d&=&\boxed{\boxed{5}} \end{array}\)

No. 8

Jika begin{cases}2a^2+2007a+3=0\\3b^2+2007b+2=0\end{cases} dan {ab\neq1}, tentukan \dfrac{a}b
\(\begin{aligned} 2a^2+2007a+3&=0\qquad&\color{red}{\times b}\\ 3b^2+2007b+2&=0\qquad&\color{red}{\times a} \end{aligned}\)

\(\begin{aligned} 2a^2b+2007ab+3b&=0\\ 3ab^2+2007ab+2a&=0\qquad&\color{red}{-}\\[-3pt]\hline\\[-12pt] 2a^2b-3ab^2+3b-2a&=0\\ ab(2a-3b)+3b-2a&=0\\ (ab-1)(2a-3b)&=0 \end{aligned}\)
  • ab-1=0
    ab=1 TM
  • 2a-3b=0
    \(\begin{aligned} 2a&=3b\\ \dfrac{a}b&=\boxed{\boxed{\dfrac32}} \end{aligned}\)

No. 9

Jika \begin{cases}2017a^2+2018a+2019=0\\2019b^2+2018b+2017=0\end{cases} dan {ab\neq1}, tentukan \dfrac{a}b
\(\begin{aligned} 2017a^2+2018a+2019&=0\qquad&\color{red}{\times b}\\ 2019b^2+2018b+2017&=0\qquad&\color{red}{\times a} \end{aligned}\)

\(\begin{aligned} 2017a^2b+2018ab+2019b&=0\\ 2019ab^2+2018ab+2017a&=0\qquad&\color{red}{-}\\[-3pt]\hline\\[-12pt] 2017a^2b-2019ab^2+2019b-2017a&=0\\ ab(2017a-2019b)-(2017a-2019b)&=0\\ (ab-1)(2017a-2019b)&=0 \end{aligned}\)
  • ab-1=0
    ab=1 TM
  • 2017a-2019b=0
    \(\begin{aligned} 2017a&=2019b\\
    \dfrac{a}b&=\boxed{\boxed{\dfrac{2019}{2017}}} \end{aligned}\)

0 Response to "Olimpiade Zone : Sistem Persamaan"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel