Exercise Zone : Logaritma

Berikut ini adalah kumpulan soal mengenai logaritma. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Terima kasih.
  • 1
  • 2

No. 1

Jika 5 ⁣log3=x{^5\negmedspace\log 3 = x} dan 3 ⁣log2=y{^3\negmedspace\log 2 = y}, maka 18 ⁣log15^{18}\negmedspace\log 15 sama dengan
  1. 2+xx(1+y)\dfrac{2+x}{x(1+y)}
  2. 1+xx(2+y)\dfrac{1+x}{x(2+y)}
  3. 2+yy(1+x)\dfrac{2+y}{y(1+x)}
  1. 1+yy(2+x)\dfrac{1+y}{y(2+x)}
  2. 3+xx(1+y)\dfrac{3+x}{x(1+y)}
5log33log2=xy5log2=xy5log⁡3⋅3log⁡2=xy5log⁡2=xy

18log15=5log155log18=5log(53)5log(322)=5log5+5log35log32+5log2=5log5+5log32 5log3+5log2=1+x2x+xy=1+xx(2+y)18log⁡15=5log⁡155log⁡18=5log⁡(5⋅3)5log⁡(32⋅2)=5log⁡5+5log⁡35log⁡32+5log⁡2=5log⁡5+5log⁡32 5log⁡3+5log⁡2=1+x2x+xy=1+xx(2+y)

No. 2

Jika 26226=x\dfrac{2-6\sqrt2}{\sqrt2-6}=x, maka x ⁣log 0,125={^x\negmedspace\log}\ 0{,}125= ....
x=262262+62+6=22+1212362236=34234=2x=2−622−6⋅2+62+6=22+12−12−3622−36=−342−34=2
$\eqalign{
{^x\negmedspace\log}\ 0{,}125&={^{\sqrt2}\negmedspace\log}\ \dfrac18\
&={^{2^{\frac12}}\negmedspace\log}\ 2^{-3}\
&=\dfrac21\cdot(-3)\
&=-6
}$

No. 2

Jika a>1a\gt1, b>1b\gt1, dan c>1c\gt1, maka (a ⁣log1b)(b ⁣log1c)(c ⁣log1a)=\left({^a\negthinspace\log}\dfrac1b\right)\left({^b\negthinspace\log}\dfrac1c\right)\left({^c\negthinspace\log}\dfrac1a\right)= ....
  1. 1abc1-abc
  2. abcabc
  1. abc-abc
  2. 11
  1. 1-1
(alog1b)(blog1c)(clog1a)=(alogb1)(blogc1)(cloga1)=(1)(1)(1)(alogb)(blogc)(cloga)=1(alog1b)(blog1c)(clog1a)=(alogb−1)(blogc−1)(cloga−1)=(−1)(−1)(−1)(alogb)(blogc)(cloga)=−1

No. 3

Nilai dari 25 ⁣log1644 ⁣log10+25 ⁣log8^{25}\negthinspace\log\dfrac1{64}\cdot{^4\negthinspace\log}10+{^{25}\negthinspace\log}8 adalah ....
  1. 32-\dfrac32
  2. 12-\dfrac12
  3. 12\dfrac12
  1. 11
  2. 32\dfrac32
$\eqalign{
^{25}\negthinspace\log\dfrac1{64}\cdot{^4\negthinspace\log}10+{^{25}\negthinspace\log}8&=^{25}\negthinspace\log4^{-3}\cdot{^4\negthinspace\log}10+{^{25}\negthinspace\log}8\
&=-3\cdot{^{25}\negthinspace\log}4\cdot{^4\negthinspace\log}10+{^{25}\negthinspace\log}8\
&=-3\cdot{^{25}\negthinspace\log}10+{^{25}\negthinspace\log}8\
&={^{25}\negthinspace\log}10^{-3}+{^{25}\negthinspace\log}8\
&={^{25}\negthinspace\log}\dfrac1{1000}+{^{25}\negthinspace\log}8\
&={^{25}\negthinspace\log}\left(\dfrac1{1000}\cdot8\right)\
&={^{25}\negthinspace\log}\dfrac8{1000}\
&={^{25}\negthinspace\log}\dfrac1{125}\
&={^{5^2}\negthinspace\log}5^{-3}\
&=\boxed{\boxed{-\dfrac32}}
}$

No. 5

Sederhanakanlah
log100+log0,1\log 100+\log0,1
log100+log0,1=log(1000,1)=log10=1log⁡100+log⁡0,1=log⁡(100⋅0,1)=log⁡10=1

No. 6

Sederhanakanlah 3 ⁣log93 ⁣log13^3\negthinspace\log9-{^3\negthinspace\log}\dfrac13
3log93log13=3log913=3log27=33log⁡9−3log13=3log⁡913=3log⁡27=3

No. 7

Sederhanakanlah
a ⁣log1+a ⁣log1^a\negthinspace\log1+{^a\negthinspace\log1}
alog1+alog1=0+0=0alog⁡1+alog⁡1=0+0=0

No. 8

Sederhanakanlah
2 ⁣log18+2 ⁣log164^2\negthinspace\log\dfrac18+{^2\negthinspace\log\dfrac1{64}}
2log18+2log164=2log123+2log126=2log23+2log26=3+(6)=92log⁡18+2log⁡164=2log⁡123+2log⁡126=2log⁡2−3+2log⁡2−6=−3+(−6)=−9

No. 9

Sederhanakanlah
2 ⁣log28+2 ⁣log18^2\negthinspace\log2^8+{^2\negthinspace\log\dfrac18}
2log28+2log18=8+2log123=8+(3)=52log⁡28+2log⁡18=8+2log⁡12−3=8+(−3)=5

No. 10

Sederhanakanlah
2 ⁣log1612+2 ⁣log813^2\negthinspace\log16^{\frac12}+{^2\negthinspace\log8^{\frac13}}
2log1612+2log813=2log(24)12+2log(23)13=2log22+2log2=2+1=32log⁡1612+2log⁡813=2log⁡(24)12+2log⁡(23)13=2log⁡22+2log⁡2=2+1=3

  • 1
  • 2

Related Posts

0 Response to "Exercise Zone : Logaritma"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel