Berikut ini adalah kumpulan soal mengenai logaritma tingkat dasar. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Terima kasih.
No. 11 Sederhanakanlah
\log10^{\frac12}+\log\sqrt{10^3} \begin{aligned}
\log10^{\frac12}+\log\sqrt{10^3}&=\dfrac12+\log10^{\frac32}\\[5pt]
&=\dfrac12+\dfrac32\\[5pt]
&=\dfrac42\\
&=\boxed{\boxed{2}}
\end{aligned}
No. 12 Sederhanakanlah
^2\negthinspace\log\sqrt2:{^2\negthinspace\log\sqrt8} \begin{aligned}
^2\negthinspace\log\sqrt2:{^2\negthinspace\log\sqrt8}&=^2\negthinspace\log2^{\frac12}:{^2\negthinspace\log\sqrt{2^3}}\\[5pt]
&=\dfrac12:{^2\negthinspace\log2^{\frac32}}\\[5pt]
&=\dfrac12:\dfrac32\\[5pt]
&=\dfrac12\times\dfrac23\\
&=\boxed{\boxed{\dfrac13}}
\end{aligned}
No. 13 Sederhanakanlah
^4\negthinspace\log2+{^4\negthinspace\log32} \begin{aligned}
^4\negthinspace\log2+{^4\negthinspace\log32}&={^{2^2}\negthinspace\log2}+{^{2^2}\negthinspace\log2^5}\\
&=\dfrac12+\dfrac52\\[5pt]
&=\dfrac62\\
&=\boxed{\boxed{3}}
\end{aligned}
5
No. 14 Jika x\gt0 dan y\gt0 , maka \dfrac{3-3\log^2xy}{1-\log x^3y^2+2\log x\sqrt{y}}= ....UN SMA 2018
\begin{aligned}
\dfrac{3-3\log^2xy}{1-\log x^3y^2+2\log x\sqrt{y}}&=\dfrac{3\left(1-\log^2xy\right)}{1-\left(\log x^3y^2-\log\left(x\sqrt{y}\right)^2\right)}\\
&=\dfrac{3\left(1+\log xy\right)\left(1-\log xy\right)}{1-\left(\log x^3y^2-\log x^2y\right)}\\
&=\dfrac{3\left(1+\log xy\right)\left(1-\log xy\right)}{1-\log\dfrac{x^3y^2}{x^2y}}\\
&=\dfrac{3\left(1+\log xy\right)\cancel{\left(1-\log xy\right)}}{\cancel{1-\log xy}}\\
&=3+3\log xy
\end{aligned}
No. 15 Diketahui nilai dari ^{45}\negthinspace\log72=a dan ^{20}\negthinspace\log180=b , maka nilai dari ^3\negthinspace\log5 adalah\dfrac{3-2(a-1)(b-1)}{a+(a-1)(b-1)}
\dfrac{6-4(a-1)(b-1)}{(2a+3)(b-1)}
\dfrac{3+2(a-1)(b-1)}{a-(a-1)(b-1)}
\dfrac{6+4(a-1)(b-1)}{(2a-3)(b-1)}
\dfrac{3+2(a-1)(b-1)}{(a-1)(b-1)-a}
\begin{aligned}
^{45}\negthinspace\log72=a\\
\dfrac{^3\negthinspace\log72}{^3\negthinspace\log45}&=a\\
\dfrac{^3\negthinspace\log\left(3^2\cdot2^3\right)}{^3\negthinspace\log\left(3^2\cdot5\right)}&=a\\
\dfrac{2+3\ ^3\negthinspace\log2}{2+{^3\negthinspace\log5}}&=a\\
2+3\ ^3\negthinspace\log2&=2a+a\ ^3\negthinspace\log5\\
3\ ^3\negthinspace\log2-a\ ^3\negthinspace\log5&=2(a-1)
\end{aligned}
\begin{aligned}
^{20}\negthinspace\log180&=b\\
\dfrac{^3\negthinspace\log180}{^3\negthinspace\log20}&=b\\
\dfrac{^3\negthinspace\log\left(3^2\cdot2^2\cdot5\right)}{^3\negthinspace\log\left(2^2\cdot5\right)}&=b\\
\dfrac{2+2\ ^3\negthinspace\log2+{^3\negthinspace\log5}}{2\ ^3\negthinspace\log2+{^3\negthinspace\log5}}&=b\\
2+2\ ^3\negthinspace\log2+{^3\negthinspace\log5}&=2b\ ^3\negthinspace\log2+b\ ^3\negthinspace\log5\\
2(b-1)\ ^3\negthinspace\log2+(b-1)\ ^3\negthinspace\log5&=2
\end{aligned}
\begin{aligned}
2(b-1)\ ^3\negthinspace\log2+(b-1)\ ^3\negthinspace\log5&=2\qquad&\color{red}{\times3}\\
3\ ^3\negthinspace\log2-a\ ^3\negthinspace\log5&=2(a-1)\qquad&\color{red}{\times2(b-1)}
\end{aligned}
\begin{aligned}
6(b-1)\ ^3\negthinspace\log2+3(b-1)\ ^3\negthinspace\log5&=6\\
6(b-1)\ ^3\negthinspace\log2-2a(b-1)\ ^3\negthinspace\log5&=4(a-1)(b-1)\qquad-\\\hline
(3+2a)(b-1)\ ^3\negthinspace\log5&=6-4(a-1)(b-1)\\
^3\negthinspace\log5&=\dfrac{6-4(a-1)(b-1)}{(3+2a)(b-1)}\\
&=\boxed{\boxed{\dfrac{6-4(a-1)(b-1)}{(2a+3)(b-1)}}}
\end{aligned}
No. 16 Hasil dari \left(\dfrac{^9\negthinspace\log4\cdot{^8\negthinspace\log3}+{^3\negthinspace\log9}}{^3\negthinspace\log54-{^3\negthinspace\log2}}\right)^2= \dfrac{49}{81}
\dfrac79
\dfrac76
\begin{aligned}
\left(\dfrac{^9\negthinspace\log4\cdot{^8\negthinspace\log3}+{^3\negthinspace\log9}}{^3\negthinspace\log54-{^3\negthinspace\log2}}\right)^2&=\left(\dfrac{^{3^2}\negthinspace\log2^2\cdot{^{2^3}\negthinspace\log3}+2}{^3\negthinspace\log\dfrac{54}2}\right)^2\\
&=\left(\dfrac{\dfrac13\cdot{^3\negthinspace\log2}\cdot{^2\negthinspace\log3}+2}{^3\negthinspace\log27}\right)^2\\
&=\left(\dfrac{\dfrac13+2}3\right)^2\\
&=\left(\dfrac{\dfrac73}3\right)^2\\
&=\left(\dfrac79\right)^2\\
&=\boxed{\boxed{\dfrac{49}{81}}}
\end{aligned}
No. 17 Jika
3^a=5 dan
5^b=2 maka nilai dari
{^{15}\negthinspace\log}40 adalah
\dfrac{2b+a}{1+a}
\dfrac{2ab+a}{2+a}
\dfrac{3ab+1}{1+a}
\dfrac{3ab+a}{1+a}
\dfrac{3b+1}{1+a}
\begin{aligned}
3^a&=5\\
^3\negthinspace\log5&=a
\end{aligned}
\begin{aligned}
5^b&=2\\
^5\negthinspace\log2&=b
\end{aligned}
\begin{aligned}
^3\negthinspace\log5\cdot{^5\negthinspace\log}2&=ab\\
^3\negthinspace\log2&=ab
\end{aligned}
\begin{aligned}
{^{15}\negthinspace\log}40&=\dfrac{^3\negthinspace\log40}{^3\negthinspace\log15}\\[8pt]
&=\dfrac{^3\negthinspace\log\left(2^3\cdot5\right)}{^3\negthinspace\log(3\cdot5)}\\[8pt]
&=\dfrac{^3\negthinspace\log2^3+{^3\negthinspace\log}5}{^3\negthinspace\log3+{^3\negthinspace\log}5}\\[8pt]
&=\dfrac{3\ {^3\negthinspace\log}2+{^3\negthinspace\log}5}{^3\negthinspace\log3+{^3\negthinspace\log}5}\\
&=\boxed{\boxed{\dfrac{3ab+a}{1+a}}}
\end{aligned}
No. 18 Jika
^3\negmedspace\log x = 1{,}23 , maka
^3\negmedspace\log 27x =
\begin{aligned}
^3\negmedspace\log 27x&={^3\negmedspace\log}27+{^3\negmedspace\log}x\\
&=3+1{,}23\\
&=\boxed{\boxed{4{,}23}}
\end{aligned}
No. 19 {^5\negmedspace\log 9+{^5\negmedspace\log 2}-{^5\negmedspace\log 450}=} ....
\begin{aligned}
^5\negmedspace\log 9+{^5\negmedspace\log 2}-{^5\negmedspace\log 450}&={^5\negmedspace\log\dfrac{9\cdot2}{450}}\\[8pt]
&={^5\negmedspace\log\dfrac1{25}}\\[8pt]
&={^5\negmedspace\log\dfrac1{5^2}}\\[8pt]
&={^5\negmedspace\log5^{-2}}\\
&=\boxed{\boxed{-2}}
\end{aligned}
No. 20
Hitunglah:
{^2\negmedspace\log 4}
{^2\negmedspace\log 8}
{^2\negmedspace\log 16}
{^3\negmedspace\log 27}
{\log 1000}
{^2\negmedspace\log 4}=2
{^2\negmedspace\log 8}=3
{^2\negmedspace\log 16}=4
{^3\negmedspace\log 27}=3
{\log 1000}=3
0 Response to "Exercise Zone : Logaritma [2]"
Post a Comment