Exercise Zone : Logaritma [2]

Berikut ini adalah kumpulan soal mengenai logaritma tingkat dasar. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Terima kasih.

No. 11

Sederhanakanlah
log1012+log103\log10^{\frac12}+\log\sqrt{10^3}
log1012+log103=12+log1032=12+32=42=2\begin{aligned} \log10^{\frac12}+\log\sqrt{10^3}&=\dfrac12+\log10^{\frac32}\\[5pt] &=\dfrac12+\dfrac32\\[5pt] &=\dfrac42\\ &=\boxed{\boxed{2}} \end{aligned}

No. 12

Sederhanakanlah
2 ⁣log2:2 ⁣log8^2\negthinspace\log\sqrt2:{^2\negthinspace\log\sqrt8}
2 ⁣log2:2 ⁣log8=2 ⁣log212:2 ⁣log23=12:2 ⁣log232=12:32=12×23=13\begin{aligned} ^2\negthinspace\log\sqrt2:{^2\negthinspace\log\sqrt8}&=^2\negthinspace\log2^{\frac12}:{^2\negthinspace\log\sqrt{2^3}}\\[5pt] &=\dfrac12:{^2\negthinspace\log2^{\frac32}}\\[5pt] &=\dfrac12:\dfrac32\\[5pt] &=\dfrac12\times\dfrac23\\ &=\boxed{\boxed{\dfrac13}} \end{aligned}

No. 13

Sederhanakanlah
4 ⁣log2+4 ⁣log32^4\negthinspace\log2+{^4\negthinspace\log32}
4 ⁣log2+4 ⁣log32=22 ⁣log2+22 ⁣log25=12+52=62=3\begin{aligned} ^4\negthinspace\log2+{^4\negthinspace\log32}&={^{2^2}\negthinspace\log2}+{^{2^2}\negthinspace\log2^5}\\ &=\dfrac12+\dfrac52\\[5pt] &=\dfrac62\\ &=\boxed{\boxed{3}} \end{aligned}

No. 14

Jika x>0x\gt0 dan y>0y\gt0, maka 33log2xy1logx3y2+2logxy=\dfrac{3-3\log^2xy}{1-\log x^3y^2+2\log x\sqrt{y}}= ....
UN SMA 2018
33log2xy1logx3y2+2logxy=3(1log2xy)1(logx3y2log(xy)2)=3(1+logxy)(1logxy)1(logx3y2logx2y)=3(1+logxy)(1logxy)1logx3y2x2y=3(1+logxy)(1logxy)1logxy=3+3logxy\begin{aligned} \dfrac{3-3\log^2xy}{1-\log x^3y^2+2\log x\sqrt{y}}&=\dfrac{3\left(1-\log^2xy\right)}{1-\left(\log x^3y^2-\log\left(x\sqrt{y}\right)^2\right)}\\ &=\dfrac{3\left(1+\log xy\right)\left(1-\log xy\right)}{1-\left(\log x^3y^2-\log x^2y\right)}\\ &=\dfrac{3\left(1+\log xy\right)\left(1-\log xy\right)}{1-\log\dfrac{x^3y^2}{x^2y}}\\ &=\dfrac{3\left(1+\log xy\right)\cancel{\left(1-\log xy\right)}}{\cancel{1-\log xy}}\\ &=3+3\log xy \end{aligned}

No. 15

Diketahui nilai dari 45 ⁣log72=a^{45}\negthinspace\log72=a dan 20 ⁣log180=b^{20}\negthinspace\log180=b, maka nilai dari 3 ⁣log5^3\negthinspace\log5 adalah



45 ⁣log72=a3 ⁣log723 ⁣log45=a3 ⁣log(3223)3 ⁣log(325)=a2+3 3 ⁣log22+3 ⁣log5=a2+3 3 ⁣log2=2a+a 3 ⁣log53 3 ⁣log2a 3 ⁣log5=2(a1)\begin{aligned} ^{45}\negthinspace\log72=a\\ \dfrac{^3\negthinspace\log72}{^3\negthinspace\log45}&=a\\ \dfrac{^3\negthinspace\log\left(3^2\cdot2^3\right)}{^3\negthinspace\log\left(3^2\cdot5\right)}&=a\\ \dfrac{2+3\ ^3\negthinspace\log2}{2+{^3\negthinspace\log5}}&=a\\ 2+3\ ^3\negthinspace\log2&=2a+a\ ^3\negthinspace\log5\\ 3\ ^3\negthinspace\log2-a\ ^3\negthinspace\log5&=2(a-1) \end{aligned}

20 ⁣log180=b3 ⁣log1803 ⁣log20=b3 ⁣log(32225)3 ⁣log(225)=b2+2 3 ⁣log2+3 ⁣log52 3 ⁣log2+3 ⁣log5=b2+2 3 ⁣log2+3 ⁣log5=2b 3 ⁣log2+b 3 ⁣log52(b1) 3 ⁣log2+(b1) 3 ⁣log5=2\begin{aligned} ^{20}\negthinspace\log180&=b\\ \dfrac{^3\negthinspace\log180}{^3\negthinspace\log20}&=b\\ \dfrac{^3\negthinspace\log\left(3^2\cdot2^2\cdot5\right)}{^3\negthinspace\log\left(2^2\cdot5\right)}&=b\\ \dfrac{2+2\ ^3\negthinspace\log2+{^3\negthinspace\log5}}{2\ ^3\negthinspace\log2+{^3\negthinspace\log5}}&=b\\ 2+2\ ^3\negthinspace\log2+{^3\negthinspace\log5}&=2b\ ^3\negthinspace\log2+b\ ^3\negthinspace\log5\\ 2(b-1)\ ^3\negthinspace\log2+(b-1)\ ^3\negthinspace\log5&=2 \end{aligned}

2(b1) 3 ⁣log2+(b1) 3 ⁣log5=2×33 3 ⁣log2a 3 ⁣log5=2(a1)×2(b1)\begin{aligned} 2(b-1)\ ^3\negthinspace\log2+(b-1)\ ^3\negthinspace\log5&=2\qquad&\color{red}{\times3}\\ 3\ ^3\negthinspace\log2-a\ ^3\negthinspace\log5&=2(a-1)\qquad&\color{red}{\times2(b-1)} \end{aligned}

6(b1) 3 ⁣log2+3(b1) 3 ⁣log5=66(b1) 3 ⁣log22a(b1) 3 ⁣log5=4(a1)(b1)(3+2a)(b1) 3 ⁣log5=64(a1)(b1)3 ⁣log5=64(a1)(b1)(3+2a)(b1)=64(a1)(b1)(2a+3)(b1)\begin{aligned} 6(b-1)\ ^3\negthinspace\log2+3(b-1)\ ^3\negthinspace\log5&=6\\ 6(b-1)\ ^3\negthinspace\log2-2a(b-1)\ ^3\negthinspace\log5&=4(a-1)(b-1)\qquad-\\\hline (3+2a)(b-1)\ ^3\negthinspace\log5&=6-4(a-1)(b-1)\\ ^3\negthinspace\log5&=\dfrac{6-4(a-1)(b-1)}{(3+2a)(b-1)}\\ &=\boxed{\boxed{\dfrac{6-4(a-1)(b-1)}{(2a+3)(b-1)}}} \end{aligned}

No. 16

Hasil dari (9 ⁣log48 ⁣log3+3 ⁣log93 ⁣log543 ⁣log2)2=\left(\dfrac{^9\negthinspace\log4\cdot{^8\negthinspace\log3}+{^3\negthinspace\log9}}{^3\negthinspace\log54-{^3\negthinspace\log2}}\right)^2=



(9 ⁣log48 ⁣log3+3 ⁣log93 ⁣log543 ⁣log2)2=(32 ⁣log2223 ⁣log3+23 ⁣log542)2=(133 ⁣log22 ⁣log3+23 ⁣log27)2=(13+23)2=(733)2=(79)2=4981\begin{aligned} \left(\dfrac{^9\negthinspace\log4\cdot{^8\negthinspace\log3}+{^3\negthinspace\log9}}{^3\negthinspace\log54-{^3\negthinspace\log2}}\right)^2&=\left(\dfrac{^{3^2}\negthinspace\log2^2\cdot{^{2^3}\negthinspace\log3}+2}{^3\negthinspace\log\dfrac{54}2}\right)^2\\ &=\left(\dfrac{\dfrac13\cdot{^3\negthinspace\log2}\cdot{^2\negthinspace\log3}+2}{^3\negthinspace\log27}\right)^2\\ &=\left(\dfrac{\dfrac13+2}3\right)^2\\ &=\left(\dfrac{\dfrac73}3\right)^2\\ &=\left(\dfrac79\right)^2\\ &=\boxed{\boxed{\dfrac{49}{81}}} \end{aligned}

No. 17

Jika 3a=53^a=5 dan 5b=25^b=2 maka nilai dari 15 ⁣log40{^{15}\negthinspace\log}40 adalah
  1. 2b+a1+a\dfrac{2b+a}{1+a}
  2. 2ab+a2+a\dfrac{2ab+a}{2+a}
  3. 3ab+11+a\dfrac{3ab+1}{1+a}
  1. 3ab+a1+a\dfrac{3ab+a}{1+a}
  2. 3b+11+a\dfrac{3b+1}{1+a}
3a=53 ⁣log5=a\begin{aligned} 3^a&=5\\ ^3\negthinspace\log5&=a \end{aligned}

5b=25 ⁣log2=b\begin{aligned} 5^b&=2\\ ^5\negthinspace\log2&=b \end{aligned}

3 ⁣log55 ⁣log2=ab3 ⁣log2=ab\begin{aligned} ^3\negthinspace\log5\cdot{^5\negthinspace\log}2&=ab\\ ^3\negthinspace\log2&=ab \end{aligned}

15 ⁣log40=3 ⁣log403 ⁣log15=3 ⁣log(235)3 ⁣log(35)=3 ⁣log23+3 ⁣log53 ⁣log3+3 ⁣log5=3 3 ⁣log2+3 ⁣log53 ⁣log3+3 ⁣log5=3ab+a1+a\begin{aligned} {^{15}\negthinspace\log}40&=\dfrac{^3\negthinspace\log40}{^3\negthinspace\log15}\\[8pt] &=\dfrac{^3\negthinspace\log\left(2^3\cdot5\right)}{^3\negthinspace\log(3\cdot5)}\\[8pt] &=\dfrac{^3\negthinspace\log2^3+{^3\negthinspace\log}5}{^3\negthinspace\log3+{^3\negthinspace\log}5}\\[8pt] &=\dfrac{3\ {^3\negthinspace\log}2+{^3\negthinspace\log}5}{^3\negthinspace\log3+{^3\negthinspace\log}5}\\ &=\boxed{\boxed{\dfrac{3ab+a}{1+a}}} \end{aligned}

No. 18

Jika 3 ⁣logx=1,23^3\negmedspace\log x = 1{,}23, maka 3 ⁣log27x=^3\negmedspace\log 27x =
  1. 3,6903{,}690
  2. 0,41-0{,}41
  3. 3,233{,}23
  1. 1,77-1{,}77
  2. 4,234{,}23
3 ⁣log27x=3 ⁣log27+3 ⁣logx=3+1,23=4,23\begin{aligned} ^3\negmedspace\log 27x&={^3\negmedspace\log}27+{^3\negmedspace\log}x\\ &=3+1{,}23\\ &=\boxed{\boxed{4{,}23}} \end{aligned}

No. 19

5 ⁣log9+5 ⁣log25 ⁣log450={^5\negmedspace\log 9+{^5\negmedspace\log 2}-{^5\negmedspace\log 450}=} ....
  1. 2-2
  2. 3-3
  3. 22
  1. 33
  2. 1-1
5 ⁣log9+5 ⁣log25 ⁣log450=5 ⁣log92450=5 ⁣log125=5 ⁣log152=5 ⁣log52=2\begin{aligned} ^5\negmedspace\log 9+{^5\negmedspace\log 2}-{^5\negmedspace\log 450}&={^5\negmedspace\log\dfrac{9\cdot2}{450}}\\[8pt] &={^5\negmedspace\log\dfrac1{25}}\\[8pt] &={^5\negmedspace\log\dfrac1{5^2}}\\[8pt] &={^5\negmedspace\log5^{-2}}\\ &=\boxed{\boxed{-2}} \end{aligned}

No. 20

Hitunglah:
  1. 2 ⁣log4{^2\negmedspace\log 4}
  2. 2 ⁣log8{^2\negmedspace\log 8}
  3. 2 ⁣log16{^2\negmedspace\log 16}
  4. 3 ⁣log27{^3\negmedspace\log 27}
  5. log1000{\log 1000}
  1. 2 ⁣log4=2{^2\negmedspace\log 4}=2
  2. 2 ⁣log8=3{^2\negmedspace\log 8}=3
  3. 2 ⁣log16=4{^2\negmedspace\log 16}=4
  4. 3 ⁣log27=3{^3\negmedspace\log 27}=3
  5. log1000=3{\log 1000}=3

Related Posts

0 Response to "Exercise Zone : Logaritma [2]"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel