SBMPTN Zone : Persamaan Eksponen

Berikut ini adalah kumpulan soal mengenai Persamaan Eksponen tingkat SBMPTN. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Terima kasih.

No. 1

Nilai x yang memenuhi dari persamaan 6x+6x+13=7{\sqrt[3]{6^x+6^{x+1}}=7} adalah
  1. 5(6 ⁣log7)5\left({^6\negmedspace\log7}\right)
  2. 4(6 ⁣log7)4\left({^6\negmedspace\log7}\right)
  3. 3(6 ⁣log7)3\left({^6\negmedspace\log7}\right)
  1. 2(6 ⁣log7)2\left({^6\negmedspace\log7}\right)
  2. 6 ⁣log7^6\negmedspace\log7
6x+6x+13=76x+66x=7376x=736x=72x=6log72=2(6log7)

No. 2

Diketahui 6x+2=18x16^{x+2} = 18^{x-1}, maka nilai xx adalah . . .
  1. 1+3 3 ⁣log61+3\ {^3\negthinspace\log6}
  2. 1+4 3 ⁣log61+4\ {^3\negthinspace\log6}
  3. 2+3 3 ⁣log42+3\ {^3\negthinspace\log4}
  1. 2+4 3 ⁣log42+4\ {^3\negthinspace\log4}
  2. 3+2 3 ⁣log43+2\ {^3\negthinspace\log4}
Math input error

No. 3

8x+27x12x+18x=76\dfrac{8^x+27^x}{12^x+18^x}=\dfrac76, jumlah dari nilai semua penyelesaian xx yang mungkin adalah....
  1. 2-2
  2. 1-1
  3. 00
  1. 11
  2. 22
8x+27x12x+18x=76(23)x+(33)x(62)x+(63)x=7623x+33x6x2x+6x3x=76(2x)3+(3x)36x(2x+3x)=76(2x+3x)((2x)2(2x)(3x)+(3x)2)(23)x(2x+3x)=76(2x)2(2x)(3x)+(3x)2(2x)(3x)=76(2x)2(2x)(3x)(2x)(3x)(2x)(3x)+(3x)2(2x)(3x)=762x3x1+3x2x=76(23)x+(32)x=136\begin{aligned}\dfrac{8^x+27^x}{12^x+18^x}&=\dfrac76\\[8pt]\dfrac{\left(2^3\right)^x+\left(3^3\right)^x}{(6\cdot2)^x+(6\cdot3)^x}&=\dfrac76\\[8pt]\dfrac{2^{3x}+3^{3x}}{6^x\cdot2^x+6^x\cdot3^x}&=\dfrac76\\[8pt]\dfrac{\left(2^x\right)^3+\left(3^x\right)^3}{6^x\left(2^x+3^x\right)}&=\dfrac76\\[8pt]\dfrac{\left(2^x+3^x\right)\left(\left(2^x\right)^2-\left(2^x\right)\left(3^x\right)+\left(3^x\right)^2\right)}{(2\cdot3)^x\left(2^x+3^x\right)}&=\dfrac76\\[8pt]\dfrac{\left(2^x\right)^2-\left(2^x\right)\left(3^x\right)+\left(3^x\right)^2}{\left(2^x\right)\left(3^x\right)}&=\dfrac76\\[8pt]\dfrac{\left(2^x\right)^2}{\left(2^x\right)\left(3^x\right)}-\dfrac{\left(2^x\right)\left(3^x\right)}{\left(2^x\right)\left(3^x\right)}+\dfrac{\left(3^x\right)^2}{\left(2^x\right)\left(3^x\right)}&=\dfrac76\\[8pt]\dfrac{2^x}{3^x}-1+\dfrac{3^x}{2^x}&=\dfrac76\\[8pt]\left(\dfrac23\right)^x+\left(\dfrac32\right)^x&=\dfrac{13}6\end{aligned}

Misal (23)x=y\left(\dfrac23\right)^x=y

y+1y=136y2+1=136yy2136y+1=0\begin{aligned}y+\dfrac1y&=\dfrac{13}6\\[8pt]y^2+1&=\dfrac{13}6y\\[8pt]y^2-\dfrac{13}6y+1&=0\end{aligned}

y1y2=ca(23)x1(23)x2=11(23)x1+x2=1x1+x2=0\begin{aligned}y_1y_2&=\dfrac{c}a\\[8pt]\left(\dfrac23\right)^{x_1}\left(\dfrac23\right)^{x_2}&=\dfrac11\\[8pt]\left(\dfrac23\right)^{x_1+x_2}&=1\\[8pt]x_1+x_2&=0\end{aligned}

No. 4

Jika x1x_1 dan x2x_2 adalah akar-akar 4x252x2+142x2+a=0{4^{\frac{x}2}-5\cdot2^{\frac{x}2+1}-4\cdot2^{\frac{x}2}+a=0} dan x1+x2=2 ⁣log52+2{x_1+x_2={^2\negmedspace\log}5^2+2}, maka a={a=}
  1. 1010
  2. 55
  3. 2525
  1. 44
  2. 1616
4x252x2+142x2+a=0(2x2)2+()2x2+a=0\begin{aligned}4^{\frac{x}2}-5\cdot2^{\frac{x}2+1}-4\cdot2^{\frac{x}2}+a&=0\\\left(2^{\frac{x}2}\right)^2+(\cdots)2^{\frac{x}2}+a&=0\end{aligned}

Math input error

No. 5

Jika x1x_1, x2x_2 adalah akar-akar 9x3x+13x+233x+3+a=0{9^x-3^{x+1}-3^{x+2}-3\cdot3^{x+3}+a=0} dimana x1+x2=33 ⁣log2{x_1+x_2=3\cdot{^3\negmedspace\log}2}, maka a=a= ....
  1. 2727
  2. 1616
  3. 99
  1. 88
  2. 44
9x3x+13x+233x+3+a=0(32)x3x313x3233x33+a=032x33x93x33x27+a=0(3x)233x93x813x+a=0(3x)2933x+a=0\begin{aligned}9^x-3^{x+1}-3^{x+2}-3\cdot3^{x+3}+a&=0\\\left(3^2\right)^x-3^x\cdot3^1-3^x\cdot3^2-3\cdot3^x\cdot3^3+a&=0\\3^{2x}-3\cdot3^x-9\cdot3^x-3\cdot3^x\cdot27+a&=0\\\left(3^x\right)^2-3\cdot3^x-9\cdot3^x-81\cdot3^x+a&=0\\\left(3^x\right)^2-93\cdot3^x+a&=0\end{aligned}
A=1A=1, B=93B=-93, C=aC=a
CARA 1CARA 2
Math input errorMath input error

Related Posts

0 Response to "SBMPTN Zone : Persamaan Eksponen"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel