Berikut ini adalah kumpulan soal mengenai Persamaan Eksponen tingkat SBMPTN. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Terima kasih.
No. 1
Nilai x yang memenuhi dari persamaan
6 x + 6 x + 1 3 = 7 {\sqrt[3]{6^x+6^{x+1}}=7} 3 6 x + 6 x + 1 = 7 adalah
5 ( 6 log 7 ) 5\left({^6\negmedspace\log7}\right) 5 ( 6 log 7 )
4 ( 6 log 7 ) 4\left({^6\negmedspace\log7}\right) 4 ( 6 log 7 )
3 ( 6 log 7 ) 3\left({^6\negmedspace\log7}\right) 3 ( 6 log 7 )
2 ( 6 log 7 ) 2\left({^6\negmedspace\log7}\right) 2 ( 6 log 7 )
6 log 7 ^6\negmedspace\log7 6 log 7
No. 2
Diketahui
6 x + 2 = 1 8 x − 1 6^{x+2} = 18^{x-1} 6 x + 2 = 1 8 x − 1 , maka nilai
x x x adalah . . .
1 + 3 3 log 6 1+3\ {^3\negthinspace\log6} 1 + 3 3 log 6
1 + 4 3 log 6 1+4\ {^3\negthinspace\log6} 1 + 4 3 log 6
2 + 3 3 log 4 2+3\ {^3\negthinspace\log4} 2 + 3 3 log 4
2 + 4 3 log 4 2+4\ {^3\negthinspace\log4} 2 + 4 3 log 4
3 + 2 3 log 4 3+2\ {^3\negthinspace\log4} 3 + 2 3 log 4
6 x + 2 6 x − 1 + 3 6 x − 1 ⋅ 6 3 6 3 6 3 x − 1 x = 1 8 x − 1 = 1 8 x − 1 = 1 8 x − 1 = 6 x − 1 1 8 x − 1 = 3 x − 1 = 3 log 6 3 = 1 + 3 3 log 6
No. 3
8 x + 2 7 x 1 2 x + 1 8 x = 7 6 \dfrac{8^x+27^x}{12^x+18^x}=\dfrac76 1 2 x + 1 8 x 8 x + 2 7 x = 6 7 , jumlah dari nilai semua penyelesaian
x x x yang mungkin adalah....
1 2 x + 1 8 x 8 x + 2 7 x ( 6 ⋅ 2 ) x + ( 6 ⋅ 3 ) x ( 2 3 ) x + ( 3 3 ) x 6 x ⋅ 2 x + 6 x ⋅ 3 x 2 3 x + 3 3 x 6 x ( 2 x + 3 x ) ( 2 x ) 3 + ( 3 x ) 3 ( 2 ⋅ 3 ) x ( 2 x + 3 x ) ( 2 x + 3 x ) ( ( 2 x ) 2 − ( 2 x ) ( 3 x ) + ( 3 x ) 2 ) ( 2 x ) ( 3 x ) ( 2 x ) 2 − ( 2 x ) ( 3 x ) + ( 3 x ) 2 ( 2 x ) ( 3 x ) ( 2 x ) 2 − ( 2 x ) ( 3 x ) ( 2 x ) ( 3 x ) + ( 2 x ) ( 3 x ) ( 3 x ) 2 3 x 2 x − 1 + 2 x 3 x ( 3 2 ) x + ( 2 3 ) x = 6 7 = 6 7 = 6 7 = 6 7 = 6 7 = 6 7 = 6 7 = 6 7 = 6 1 3
Misal
( 2 3 ) x = y \left(\dfrac23\right)^x=y ( 3 2 ) x = y
y + y 1 y 2 + 1 y 2 − 6 1 3 y + 1 = 6 1 3 = 6 1 3 y = 0
y 1 y 2 ( 3 2 ) x 1 ( 3 2 ) x 2 ( 3 2 ) x 1 + x 2 x 1 + x 2 = a c = 1 1 = 1 = 0
No. 4
Jika
x 1 x_1 x 1 dan
x 2 x_2 x 2 adalah akar-akar
4 x 2 − 5 ⋅ 2 x 2 + 1 − 4 ⋅ 2 x 2 + a = 0 {4^{\frac{x}2}-5\cdot2^{\frac{x}2+1}-4\cdot2^{\frac{x}2}+a=0} 4 2 x − 5 ⋅ 2 2 x + 1 − 4 ⋅ 2 2 x + a = 0 dan
x 1 + x 2 = 2 log 5 2 + 2 {x_1+x_2={^2\negmedspace\log}5^2+2} x 1 + x 2 = 2 log 5 2 + 2 , maka
a = {a=} a =
4 2 x − 5 ⋅ 2 2 x + 1 − 4 ⋅ 2 2 x + a ( 2 2 x ) 2 + ( ⋯ ) 2 2 x + a = 0 = 0
x 1 + x 2 2 x 1 + x 2 ( 2 2 x 1 + x 2 ) 2 ( 2 2 x 1 ⋅ 2 2 x 2 ) 2 ( 1 a ) 2 a 2 a = 2 log 5 2 + 2 = 2 2 l o g 5 2 + 2 = 2 2 l o g 5 2 ⋅ 2 2 = 5 2 ⋅ 2 2 = ( 5 ⋅ 2 ) 2 = 1 0 2 = 1 0
No. 5
Jika
x 1 x_1 x 1 ,
x 2 x_2 x 2 adalah akar-akar
9 x − 3 x + 1 − 3 x + 2 − 3 ⋅ 3 x + 3 + a = 0 {9^x-3^{x+1}-3^{x+2}-3\cdot3^{x+3}+a=0} 9 x − 3 x + 1 − 3 x + 2 − 3 ⋅ 3 x + 3 + a = 0 dimana
x 1 + x 2 = 3 ⋅ 3 log 2 {x_1+x_2=3\cdot{^3\negmedspace\log}2} x 1 + x 2 = 3 ⋅ 3 log 2 , maka
a = a= a = ....
9 x − 3 x + 1 − 3 x + 2 − 3 ⋅ 3 x + 3 + a ( 3 2 ) x − 3 x ⋅ 3 1 − 3 x ⋅ 3 2 − 3 ⋅ 3 x ⋅ 3 3 + a 3 2 x − 3 ⋅ 3 x − 9 ⋅ 3 x − 3 ⋅ 3 x ⋅ 2 7 + a ( 3 x ) 2 − 3 ⋅ 3 x − 9 ⋅ 3 x − 8 1 ⋅ 3 x + a ( 3 x ) 2 − 9 3 ⋅ 3 x + a = 0 = 0 = 0 = 0 = 0
A = 1 A=1 A = 1 ,
B = − 93 B=-93 B = − 9 3 ,
C = a C=a C = a
CARA 1 CARA 2
3 x 1 + x 2 3 x 1 ⋅ 3 x 2 A C 1 a a = 3 3 ⋅ 3 l o g 2 = 3 3 l o g 2 3 = 3 3 l o g 8 = 8 = 8 x 1 + x 2 3 log A C 3 log 1 a 3 log a a = 3 ⋅ 3 log 2 = 3 log 2 3 = 3 log 8 = 3 log 8 = 8
0 Response to "SBMPTN Zone : Persamaan Eksponen"
Post a Comment