SBMPTN Zone : Persamaan Eksponen

Berikut ini adalah kumpulan soal mengenai Persamaan Eksponen tingkat SBMPTN. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Terima kasih.

No. 1

Nilai x yang memenuhi dari persamaan {\sqrt[3]{6^x+6^{x+1}}=7} adalah
  1. 5\left({^6\negmedspace\log7}\right)
  2. 4\left({^6\negmedspace\log7}\right)
  3. 3\left({^6\negmedspace\log7}\right)
  1. 2\left({^6\negmedspace\log7}\right)
  2. ^6\negmedspace\log7
\(\eqalign{ \sqrt[3]{6^x+6^{x+1}}&=7\\ 6^x+6\cdot6^x&=7^3\\ 7\cdot6^x&=7^3\\ 6^x&=7^2\\ x&={^6\negmedspace\log7^2}\\ &=\boxed{\boxed{2\left({^6\negmedspace\log7}\right)}} }\)

No. 2

Diketahui 6^{x+2} = 18^{x-1}, maka nilai x adalah . . .
  1. 1+3\ {^3\negthinspace\log6}
  2. 1+4\ {^3\negthinspace\log6}
  3. 2+3\ {^3\negthinspace\log4}
  1. 2+4\ {^3\negthinspace\log4}
  2. 3+2\ {^3\negthinspace\log4}
\(\begin{aligned} 6^{x+2}&= 18^{x-1}\\ 6^{x-1+3}&= 18^{x-1}\\ 6^{x-1}\cdot6^3&= 18^{x-1}\\ 6^3&=\dfrac{18^{x-1}}{6^{x-1}}\\ 6^3&=3^{x-1}\\ x-1&={^3\negthinspace\log6^3}\\ x&=1+3\ {^3\negthinspace\log6} \end{aligned}\)

No. 3

\dfrac{8^x+27^x}{12^x+18^x}=\dfrac76, jumlah dari nilai semua penyelesaian x yang mungkin adalah....
  1. -2
  2. -1
  3. 0
  1. 1
  2. 2
\(\begin{aligned} \dfrac{8^x+27^x}{12^x+18^x}&=\dfrac76\\[8pt] \dfrac{\left(2^3\right)^x+\left(3^3\right)^x}{(6\cdot2)^x+(6\cdot3)^x}&=\dfrac76\\[8pt] \dfrac{2^{3x}+3^{3x}}{6^x\cdot2^x+6^x\cdot3^x}&=\dfrac76\\[8pt] \dfrac{\left(2^x\right)^3+\left(3^x\right)^3}{6^x\left(2^x+3^x\right)}&=\dfrac76\\[8pt] \dfrac{\left(2^x+3^x\right)\left(\left(2^x\right)^2-\left(2^x\right)\left(3^x\right)+\left(3^x\right)^2\right)}{(2\cdot3)^x\left(2^x+3^x\right)}&=\dfrac76\\[8pt] \dfrac{\left(2^x\right)^2-\left(2^x\right)\left(3^x\right)+\left(3^x\right)^2}{\left(2^x\right)\left(3^x\right)}&=\dfrac76\\[8pt] \dfrac{\left(2^x\right)^2}{\left(2^x\right)\left(3^x\right)}-\dfrac{\left(2^x\right)\left(3^x\right)}{\left(2^x\right)\left(3^x\right)}+\dfrac{\left(3^x\right)^2}{\left(2^x\right)\left(3^x\right)}&=\dfrac76\\[8pt] \dfrac{2^x}{3^x}-1+\dfrac{3^x}{2^x}&=\dfrac76\\[8pt] \left(\dfrac23\right)^x+\left(\dfrac32\right)^x&=\dfrac{13}6 \end{aligned}\)

Misal \left(\dfrac23\right)^x=y

\(\begin{aligned} y+\dfrac1y&=\dfrac{13}6\\[8pt] y^2+1&=\dfrac{13}6y\\[8pt] y^2-\dfrac{13}6y+1&=0 \end{aligned}\)

\(\begin{aligned} y_1y_2&=\dfrac{c}a\\[8pt] \left(\dfrac23\right)^{x_1}\left(\dfrac23\right)^{x_2}&=\dfrac11\\[8pt] \left(\dfrac23\right)^{x_1+x_2}&=1\\[8pt] x_1+x_2&=0 \end{aligned}\)

No. 4

Jika x_1 dan x_2 adalah akar-akar {4^{\frac{x}2}-5\cdot2^{\frac{x}2+1}-4\cdot2^{\frac{x}2}+a=0} dan {x_1+x_2={^2\negmedspace\log}5^2+2}, maka {a=}
  1. 10
  2. 5
  3. 25
  1. 4
  2. 16
\(\begin{aligned} 4^{\frac{x}2}-5\cdot2^{\frac{x}2+1}-4\cdot2^{\frac{x}2}+a&=0\\ \left(2^{\frac{x}2}\right)^2+(\cdots)2^{\frac{x}2}+a&=0 \end{aligned}\)

\(\begin{aligned} x_1+x_2&={^2\negmedspace\log}5^2+2\\ 2^{x_1+x_2}&=2^{^2\negmedspace\log5^2+2}\\ \left(2^{\frac{x_1+x_2}2}\right)^2&=2^{^2\negmedspace\log5^2}\cdot2^2\\ \left(2^{\frac{x_1}2}\cdot2^{\frac{x_2}2}\right)^2&=5^2\cdot2^2\\ \left(\dfrac{a}1\right)^2&=(5\cdot2)^2\\ a^2&=10^2\\ a&=\boxed{\boxed{10}} \end{aligned}\)

No. 5

Jika x_1, x_2 adalah akar-akar {9^x-3^{x+1}-3^{x+2}-3\cdot3^{x+3}+a=0} dimana {x_1+x_2=3\cdot{^3\negmedspace\log}2}, maka a= ....
  1. 27
  2. 16
  3. 9
  1. 8
  2. 4
\(\begin{aligned} 9^x-3^{x+1}-3^{x+2}-3\cdot3^{x+3}+a&=0\\ \left(3^2\right)^x-3^x\cdot3^1-3^x\cdot3^2-3\cdot3^x\cdot3^3+a&=0\\ 3^{2x}-3\cdot3^x-9\cdot3^x-3\cdot3^x\cdot27+a&=0\\ \left(3^x\right)^2-3\cdot3^x-9\cdot3^x-81\cdot3^x+a&=0\\ \left(3^x\right)^2-93\cdot3^x+a&=0 \end{aligned}\)
A=1, B=-93, C=a
CARA 1CARA 2
\(\begin{aligned} 3^{x_1+x_2}&=3^{3\cdot{^3\negmedspace\log2}}\\ 3^{x_1}\cdot3^{x_2}&=3^{{^3\negmedspace\log}2^3}\\ \dfrac{C}A&=3^{{^3\negmedspace\log}8}\\ \dfrac{a}1&=8\\ a&=8 \end{aligned}\)\(\begin{aligned} x_1+x_2&=3\cdot{^3\negmedspace\log}2\\ {^3\negmedspace\log}\dfrac{C}A&={^3\negmedspace\log}2^3\\ {^3\negmedspace\log}\dfrac{a}1&={^3\negmedspace\log}8\\ {^3\negmedspace\log}a&={^3\negmedspace\log}8\\ a&=8 \end{aligned}\)

0 Response to "SBMPTN Zone : Persamaan Eksponen"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel