SBMPTN Zone : Persamaan Logaritma

Berikut ini adalah kumpulan soal mengenai Persamaan Logaritma tingkat SBMPTN. Jika ada jawaban yang salah mohon dikoreksi melalui komentar. Terima kasih.

No. 1

Jika {{^4\negmedspace\log\sqrt{x}}+{^2\negmedspace\log y}={^4\negmedspace\log z^2}}, maka z^2 =
  1. x\sqrt{y}
  2. \sqrt{x}y
  3. \sqrt{x}y^2
  1. x^2\sqrt{y}
  2. xy
\(\eqalign{ {^4\negmedspace\log\sqrt{x}}+{^2\negmedspace\log y}&={^4\negmedspace\log z^2}\\ {^4\negmedspace\log\sqrt{x}}+{^{2^2}\negmedspace\log y^2}&={^4\negmedspace\log z^2}\\ {^4\negmedspace\log\sqrt{x}}+{^4\negmedspace\log y^2}&={^4\negmedspace\log z^2}\\ {^4\negmedspace\log\sqrt{x}y^2}&={^4\negmedspace\log z^2}\\ \sqrt{x}y^2&=z^2\\ z^2&=\boxed{\boxed{\sqrt{x}y^2}} }\)

No. 2

Jika x_1 dan x_2 memenuhi \left(^{(x-1)}\log4\right)^2=4, maka nilai {x_1+x_2} adalah
  1. 3
  2. 3\dfrac12
  3. 4
  1. 4\dfrac12
  2. 5
Syarat:
\begin{aligned}
x-1&\gt0\\
x&\gt1
\end{aligned}


\begin{aligned}
\left(^{(x-1)}\log4\right)^2&=4\\
^{(x-1)}\log4&=\pm2
\end{aligned}

\begin{aligned}
^{(x-1)}\log4&=2\\
(x-1)^2&=4\\
x^2-2x+1&=4\\
x^2-2x-3&=0\\
(x+1)(x-3)&=0
\end{aligned}

x=-1 (PM) atau \boxed{x=3}
\begin{aligned}
^{(x-1)}\log4&=-2\\
(x-1)^{-2}&=4\\
\dfrac1{(x-1)^2}&=4\\
(x-1)^2&=\dfrac14\\
x^2-2x+1&=\dfrac14\\
4x^2-8x+4&=1\\
4x^2-8x+3&=0\\
(2x-1)(2x-3)&=0
\end{aligned}

x=\dfrac12 (PM) atau \boxed{x=\dfrac32=1\dfrac12}

\begin{aligned}
x_1+x_2&=3+1\dfrac12\\
&=\color{blue}{\boxed{\boxed{\color{black}{4\dfrac12}}}}
\end{aligned}

No. 3

Jika x_1 dan x_2 memenuhi \left({^{x-2}\log}9\right)^2=4, maka nilai x_1+x_2 adalah ....
Ganesha Operation
\begin{aligned}
\left({^{x-2}\log}9\right)^2&=4\\
{^{x-2}\log}9&=\pm2\\
x-2&=9^{\pm\frac12}
\end{aligned}


  • x_1-2=9^{\frac12}
    \begin{aligned}
    x_1&=2+3\\
    &=5
    \end{aligned}
  • x_2-2=9^{-\frac12}
    \begin{aligned}
    x_2&=2+\dfrac13\\
    &=2\dfrac13
    \end{aligned}

x_1+x_2=5+2\dfrac13=7\dfrac13

No. 4

Jika x_1 dan x_2 memenuhi {\left({^{27}\negthinspace\log}\dfrac1{x+1}\right)^2=\dfrac19}, maka nilai x_1x_2 adalah ....
  1. \dfrac53
  2. \dfrac43
  3. \dfrac13
  1. -\dfrac23
  2. -\dfrac43
SBMPTN 2018 Kode 517
\begin{aligned}
\left({^{27}\negthinspace\log}\dfrac1{x+1}\right)^2&=\dfrac19\\[8pt]
{^{27}\negthinspace\log}\dfrac1{x+1}&=\pm\dfrac13\\[8pt]
\dfrac1{x+1}&=27^{\pm\frac13}\\
&=\left(3^3\right)^{\pm\frac13}\\
&=3^{\pm1}\\
x+1&=\dfrac1{3^{\pm1}}\\
x&=-1+\dfrac1{3^{\pm1}}
\end{aligned}


\begin{aligned}
x_1&=-1+\dfrac13\\
&=-\dfrac23
\end{aligned}


\begin{aligned}
x_2&=-1+\dfrac1{3^{-1}}\\
&=-1+3\\
&=2
\end{aligned}


\begin{aligned}
x_1x_2&=\left(-\dfrac23\right)(2)\\
&=-\dfrac43
\end{aligned}

No. 5

Jika ^3\negthinspace\log p+{^9\negthinspace\log q} = 5 dan ^9\negthinspace\log q^8 +{^3\negthinspace\log p^5} = 11, maka nilai dari ^q\negthinspace\log p^2 adalah ....
  1. 6\ ^3\negthinspace\log p
  2. 6\ ^3\negthinspace\log q
  3. 3\ ^3\negthinspace\log p
  1. -3\ ^3\negthinspace\log q
  2. -3\ ^3\negthinspace\log q
http://www.learncy.net/problem/166/
\begin{aligned}
^9\negthinspace\log q^8 +{^3\negthinspace\log p^5}&=11\\
8\ ^9\negthinspace\log q+5\ ^3\negthinspace\log p&=11\\
5\ ^9\negthinspace\log q+5\ ^3\negthinspace\log p&=25\qquad-\\\hline
3\ ^9\negthinspace\log q&=-14\\
^9\negthinspace\log q&=-\dfrac{14}3
\end{aligned}


\begin{aligned}
^q\negthinspace\log p^2&=\dfrac{^9\negthinspace\log p^2}{^9\negthinspace\log q}\\
&=\dfrac{^{3^2}\negthinspace\log p^2}{-\dfrac{14}3}\\
\end{aligned}

No. 6

Jika xy= 90 dan \log x-\log y= 1, maka x-y= ....
  1. 27
  2. 25
  3. -26
  1. 19
  2. 20
Syarat:
  • x\gt0
  • y\gt0

\begin{aligned}
\log x-\log y&= 1\\
\log\dfrac{x}y&=\log10\\
\dfrac{x}y&=10\\
x&=10y
\end{aligned}


\begin{aligned}
xy&=90\\
(10y)y&=90\\
10y^2&=90\\
y^2&=9\\
y&=\boxed{3}
\end{aligned}


\begin{aligned}
x&=10y\\
&=10(3)\\
&=\boxed{30}
\end{aligned}


\begin{aligned}
x-y&=30-3\\
&=\boxed{\boxed{27}}
\end{aligned}

No. 7

Jika \log\left(x^2\right)+\log\left(10x^2\right)+\log\left(10^2x^2\right)+\cdots+\log\left(10^9x^2\right)=55, maka x= ....
\begin{aligned}
\log\left(x^2\right)+\log\left(10x^2\right)+\log\left(10^2x^2\right)+\cdots+\log\left(10^9x^2\right)&=55\\
\log\left(x^2\cdot10x^2\cdot10^2x^2\cdots10^9x^2\right)&=55\\
\log\left(10^{1+2+\cdots+9}x^{20}\right)&=55\\
\log\left(10^{45}x^{20}\right)&=55\\
10^{45}x^{20}&=10^{55}\\
x^{20}&=\dfrac{10^{55}}{10^{45}}\\
&=10^{10}\\
x&=10^{\frac{10}{20}}\\
&=10^{\frac12}\\
&=\boxed{\boxed{\sqrt{10}}}
\end{aligned}

No. 8

Penyelesaian dari (2x)^{1+\log_22x}\geq64x^3 adalah
  1. 0\lt x\leq\dfrac14
  2. \dfrac14\leq x\leq4
  3. x\leq\dfrac14 atau x\geq4
  1. 0\lt x\leq\dfrac14 atau x\geq4
  2. \dfrac14\leq x\leq2 atau x\gt4
\begin{aligned}
(2x)^{1+\log_22x}&\geq64x^3\\
\log_2\left((2x)^{1+\log_22x}\right)&\geq\log_264x^3\\
\left(1+\log_22x\right)\log_22x&\geq\log_2\left(8\cdot8x^3\right)\\
\log_22x+{\log_2}^22x&\geq\log_28+\log_28x^3\\
{\log_2}^22x+\log_22x&\geq3+\log_2(2x)^3\\
{\log_2}^22x+\log_22x&\geq3+3\log_22x
\end{aligned}

Misal \log_22x=p
\begin{aligned}
p^2+p&\geq3+3p\\
p^2-2p-3&\geq0\\
(p+1)(p-3)&\geq0
\end{aligned}

p\leq-1ataup\geq3
\log_22x\leq-1atau\log_22x\geq3
2x\leq2^{-1}atau2x\geq2^3
2x\leq\dfrac12atau2x\geq8
x\leq\dfrac14ataux\geq4

Syarat:
  • 2x\gt0
    x\gt0
  • 2x\neq1
    x\neq\dfrac12


0\lt x\leq\dfrac14 atau x\geq4

0 Response to "SBMPTN Zone : Persamaan Logaritma"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel