Exercise Zone : Integral Trigonometri Tak Tentu

Berikut ini adalah kumpulan soal mengenai Integral Trigonometri Tak Tentu tingkat dasar. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Terima kasih.

No. 1

Hasil dari sin3x dx\displaystyle\int\sin^3x\ dx adalah ....
  1. 13cos3x+C{-\dfrac13\cos^3x+C}
  2. cosx13sin3x+C{-\cos x-\dfrac13\sin^3x+C}
  3. cosx13sin3x+C{\cos x-\dfrac13\sin^3x+C}
  1. cosx+13cos3x+C{-\cos x+\dfrac13\cos^3x+C}
  2. 13sin3x+C{-\dfrac13\sin^3x+C}
sin 3x dx=sinx sin 2x dx=sinx(1 cos 2x) dx=(sinxsinx cos 2x) dx=sinx dxsinx cos 2x dx\begin{aligned}\displaystyle\int\sin^3x\ dx&=\displaystyle\int\sin x\sin^2x\ dx\\&=\displaystyle\int\sin x\left(1-\cos^2x\right)\ dx\\&=\displaystyle\int\left(\sin x-\sin x\cos^2x\right)\ dx\\&=\displaystyle\int \sin x\ dx-\displaystyle\int\sin x\cos^2x\ dx\\\end{aligned}
Misal
u=cosxdu=sinx dxdx=dusinx\begin{aligned}u&=\cos x\\du&=-\sin x\ dx\\dx&=\dfrac{du}{-\sin x}\end{aligned}

sinx dxsinx cos 2x dx=cosxsinxu2 dusinx=cosx+u2 du=cosx+13u3+C=cosx+13 cos 3x+C\begin{aligned}\displaystyle\int \sin x\ dx-\displaystyle\int\sin x\cos^2x\ dx&=-\cos x-\displaystyle\int\sin x\cdot u^2\ \dfrac{du}{-\sin x}\\[8pt]&=-\cos x+\displaystyle\int u^2\ du\\&=-\cos x+\dfrac13u^3+C\\&=\boxed{\boxed{-\cos x+\dfrac13\cos^3x+C}}\end{aligned}

No. 2

sinx(1sin2x) dx=\displaystyle\int\sin x\left(1-\sin^2x\right)\ dx= ....
  1. cosx13cos3x+C{\cos x-\dfrac13\cos^3x+C}
  2. cosx13sin3x+C{\cos x-\dfrac13\sin^3x+C}
  3. 13cos3x+C{-\dfrac13\cos^3x+C}
  1. 13sin3x+C{-\dfrac13\sin^3x+C}
  2. cosx13sin3x+C{-\cos x-\dfrac13\sin^3x+C}
sinx(1sin2x) dx=sinxcos2x dx\displaystyle\int\sin x\left(1-\sin^2x\right)\ dx=\displaystyle\int\sin x\cos^2x\ dx
Misal
u=cosxdu=sinx dxdx=dusinx\begin{aligned}u&=\cos x\\du&=-\sin x\ dx\\dx&=\dfrac{du}{-\sin x}\end{aligned}

sinx cos 2x dx=sinxu2 dusinx=u2 du=13u3+C=13 cos 3x+C\begin{aligned}\displaystyle\int\sin x\cos^2x\ dx&=\displaystyle\int\sin x\cdot u^2\ \dfrac{du}{-\sin x}\\[8pt]&=-\displaystyle\int\cdot u^2\ du\\&=-\dfrac13u^3+C\\&=\boxed{\boxed{-\dfrac13\cos^3x+C}}\end{aligned}

Related Posts

0 Response to "Exercise Zone : Integral Trigonometri Tak Tentu"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel