Exercise Zone : Pangkat (Eksponen)

Berikut ini adalah kumpulan soal mengenai Pangkat (Eksponen) tingkat dasar. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Terima kasih.

No. 1

Hitunglah hasil perpangkatan berikut
\left(\dfrac{27}{125}\right)^{\frac13}\left(\dfrac19\right)^{-2}
\(\begin{aligned} \left(\dfrac{27}{125}\right)^{\frac13}\left(\dfrac19\right)^{-2}&=\left(\dfrac{3^3}{5^3}\right)^{\frac13}\left(\dfrac1{3^2}\right)^{-2}\\[8pt] &=\dfrac{\left(3^3\right)^{\frac13}}{\left(5^3\right)^{\frac13}}\left(3^{-2}\right)^{-2}\\[8pt] &=\dfrac35\left(3^4\right)\\[8pt] &=\dfrac35\left(81\right)\\ &=\boxed{\boxed{\dfrac{243}5}} \end{aligned}\)

No. 2

Diketahui a, b, dan c adalah bilangan real positif, jika \dfrac{\sqrt{bc}}{\sqrt[5]{ab^4}}= ab, maka nilai c^5 adalah
  1. a^{11}b^{12}
  2. a^{12}b^{11}
  3. a^{14}b^{13}
  1. a^{13}b^{12}
  2. a^{12}b^{13}
\(\begin{aligned} \dfrac{\sqrt{bc}}{\sqrt[5]{ab^4}}&= ab\\ \left(\dfrac{\sqrt{bc}}{\sqrt[5]{ab^4}}\right)^{10}&=(ab)^{10}\\ \dfrac{(bc)^5}{\left(ab^4\right)^2}&=a^{10}b^{10}\\ \dfrac{b^5c^5}{a^2b^8}&=a^{10}b^{10}\\ c^5&=\dfrac{a^2b^8\cdot a^{10}b^{10}}{b^5}\\ &=\boxed{\boxed{a^{12}b^{13}}} \end{aligned}\)

No. 3

{\dfrac{1}{1+A^{x-y}}+\dfrac{1}{1+A^{y-x}}=} ....
  1. -1
  2. 0
  3. \dfrac12
  1. 1
  2. A^{x+y}
\(\begin{aligned} \dfrac{1}{1+A^{x-y}}+\dfrac{1}{1+A^{y-x}}&=\dfrac{1}{1+\dfrac{A^x}{A^y}}+\dfrac{1}{1+\dfrac{A^y}{A^x}}\\[20pt] &=\dfrac{1}{\dfrac{A^y+A^x}{A^y}}+\dfrac{1}{\dfrac{A^x+A^y}{A^x}}\\[20pt] &=\dfrac{A^y}{A^y+A^x}+\dfrac{A^x}{A^x+A^y}\\[8pt] &=\dfrac{A^y}{A^y+A^x}+\dfrac{A^x}{A^y+A^x}\\[8pt] &=\dfrac{A^y+A^x}{A^y+A^x}\\ &=\boxed{\boxed{1}} \end{aligned}\)

No. 4

Bentuk sederhana dari \left(\dfrac{p^{-2}q^2r}{pq^{-1}r^3}\right)^2 adalah ....
  1. \dfrac{p^6}{q^5r^4}
  2. \dfrac{p^6}{q^6r^2}
  3. \dfrac{p^3}{q^5r^2}
  1. \dfrac{q^6}{p^6r^4}
  2. \dfrac{q^5p^6}{r^2}
\(\begin{aligned} \left(\dfrac{p^{-2}q^2r}{pq^{-1}r^3}\right)^2&=\left(\dfrac{q^{2-(-1)}}{p^{1-(-2)}r^{3-1}}\right)^2\\[8pt] &=\left(\dfrac{q^3}{p^3r^2}\right)^2\\[8pt] &=\boxed{\boxed{\dfrac{q^6}{p^6r^4}}} \end{aligned}\)

No. 5

Hasil dari \dfrac{8^{-\frac35}9^{\frac54}}{81^{-\frac18}64^{\frac15}} adalah
  1. \dfrac{27}2
  2. \dfrac92
  3. \dfrac{27}8
  1. \dfrac98
  2. \dfrac8{27}
\(\eqalign{ \dfrac{8^{-\frac35}9^{\frac54}}{81^{-\frac18}64^{\frac15}}&=\dfrac{8^{-\frac35}\left(3^2\right)^{\frac54}}{\left(3^4\right)^{-\frac18}\left(8^2\right)^{\frac15}}\\ &=\dfrac{8^{-\frac35}3^{\frac52}}{3^{-\frac12}8^{\frac25}}\\ &=\dfrac{3^{\frac52+\frac12}}{8^{\frac25+\frac35}}\\ &=\dfrac{3^{\frac62}}{8^{\frac55}}\\ &=\dfrac{3^3}{8^1}\\ &=\boxed{\boxed{\dfrac{27}8}} }\)

0 Response to "Exercise Zone : Pangkat (Eksponen)"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel