Exercise Zone : Pangkat (Eksponen)

Berikut ini adalah kumpulan soal mengenai Pangkat (Eksponen) tingkat dasar. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Terima kasih.

No. 1

Hitunglah hasil perpangkatan berikut
(27125)13(19)2\left(\dfrac{27}{125}\right)^{\frac13}\left(\dfrac19\right)^{-2}
(27125)13(19)2=(3353)13(132)2=(33)13(53)13(32)2=35(34)=35(81)=2435\begin{aligned}\left(\dfrac{27}{125}\right)^{\frac13}\left(\dfrac19\right)^{-2}&=\left(\dfrac{3^3}{5^3}\right)^{\frac13}\left(\dfrac1{3^2}\right)^{-2}\\[8pt]&=\dfrac{\left(3^3\right)^{\frac13}}{\left(5^3\right)^{\frac13}}\left(3^{-2}\right)^{-2}\\[8pt]&=\dfrac35\left(3^4\right)\\[8pt]&=\dfrac35\left(81\right)\\&=\boxed{\boxed{\dfrac{243}5}}\end{aligned}

No. 2

Diketahui aa, bb, dan cc adalah bilangan real positif, jika bcab45=ab\dfrac{\sqrt{bc}}{\sqrt[5]{ab^4}}= ab, maka nilai c5c^5 adalah
  1. a11b12a^{11}b^{12}
  2. a12b11a^{12}b^{11}
  3. a14b13a^{14}b^{13}
  1. a13b12a^{13}b^{12}
  2. a12b13a^{12}b^{13}
bcab45=ab(bcab45)10=(ab)10(bc)5(ab4)2=a10b10b5c5a2b8=a10b10c5=a2b8a10b10b5=a12b13\begin{aligned}\dfrac{\sqrt{bc}}{\sqrt[5]{ab^4}}&= ab\\\left(\dfrac{\sqrt{bc}}{\sqrt[5]{ab^4}}\right)^{10}&=(ab)^{10}\\\dfrac{(bc)^5}{\left(ab^4\right)^2}&=a^{10}b^{10}\\\dfrac{b^5c^5}{a^2b^8}&=a^{10}b^{10}\\c^5&=\dfrac{a^2b^8\cdot a^{10}b^{10}}{b^5}\\&=\boxed{\boxed{a^{12}b^{13}}}\end{aligned}

No. 3

11+Axy+11+Ayx={\dfrac{1}{1+A^{x-y}}+\dfrac{1}{1+A^{y-x}}=} ....
  1. 1-1
  2. 00
  3. 12\dfrac12
  1. 11
  2. Ax+yA^{x+y}
11+Axy+11+Ayx=11+AxAy+11+AyAx=1Ay+AxAy+1Ax+AyAx=AyAy+Ax+AxAx+Ay=AyAy+Ax+AxAy+Ax=Ay+AxAy+Ax=1\begin{aligned}\dfrac{1}{1+A^{x-y}}+\dfrac{1}{1+A^{y-x}}&=\dfrac{1}{1+\dfrac{A^x}{A^y}}+\dfrac{1}{1+\dfrac{A^y}{A^x}}\\[20pt]&=\dfrac{1}{\dfrac{A^y+A^x}{A^y}}+\dfrac{1}{\dfrac{A^x+A^y}{A^x}}\\[20pt]&=\dfrac{A^y}{A^y+A^x}+\dfrac{A^x}{A^x+A^y}\\[8pt]&=\dfrac{A^y}{A^y+A^x}+\dfrac{A^x}{A^y+A^x}\\[8pt]&=\dfrac{A^y+A^x}{A^y+A^x}\\&=\boxed{\boxed{1}}\end{aligned}

No. 4

Bentuk sederhana dari (p2q2rpq1r3)2\left(\dfrac{p^{-2}q^2r}{pq^{-1}r^3}\right)^2 adalah ....
  1. p6q5r4\dfrac{p^6}{q^5r^4}
  2. p6q6r2\dfrac{p^6}{q^6r^2}
  3. p3q5r2\dfrac{p^3}{q^5r^2}
  1. q6p6r4\dfrac{q^6}{p^6r^4}
  2. q5p6r2\dfrac{q^5p^6}{r^2}
(p2q2rpq1r3)2=(q2(1)p1(2)r31)2=(q3p3r2)2=q6p6r4\begin{aligned}\left(\dfrac{p^{-2}q^2r}{pq^{-1}r^3}\right)^2&=\left(\dfrac{q^{2-(-1)}}{p^{1-(-2)}r^{3-1}}\right)^2\\[8pt]&=\left(\dfrac{q^3}{p^3r^2}\right)^2\\[8pt]&=\boxed{\boxed{\dfrac{q^6}{p^6r^4}}}\end{aligned}

No. 5

Hasil dari 83595481186415\dfrac{8^{-\frac35}9^{\frac54}}{81^{-\frac18}64^{\frac15}} adalah
  1. 272\dfrac{27}2
  2. 92\dfrac92
  3. 278\dfrac{27}8
  1. 98\dfrac98
  2. 827\dfrac8{27}
83595481186415=835(32)54(34)18(82)15=835352312825=352+12825+35=362855=3381=278

Related Posts

0 Response to "Exercise Zone : Pangkat (Eksponen)"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel