Diketahui x,y∈R, x>2016 dan x>2017. Jika 2016(x+2016)(x−2016)+2017(x+2017)(x−2017)=21(x2+y2)
maka nilai xy=
Misal a=(x+2016)(x−2016) a2x2=x2−20162=a2+20162
Misal b=(y+2017)(y−2017) b2y2=y2−20172=b2+20172
2016a+2017b2⋅2016a+2⋅2017ba2−2⋅2016a+20162+b2−2⋅2017b+20172(a−2016)2+(b−2017)2=21(a2+20162+b2+20172)=a2+20162+b2+20172=0=0
didapat a=2016 dan b=2017
0 Response to "Olimpiade Zone : Aljabar [2]"
Post a Comment