Olimpiade Zone : Aljabar [2]

Berikut ini adalah kumpulan soal mengenai Aljabar tingkat olimpiade. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Terima kasih.

No. 11

Diketahui x,yRx,y\in R, x>2016x\gt2016 dan x>2017x\gt2017. Jika 2016(x+2016)(x2016)+2017(x+2017)(x2017)=12(x2+y2)2016\sqrt{(x+2016)(x-2016)}+2017\sqrt{(x+2017)(x-2017)}=\dfrac12\left(x^2+y^2\right)
maka nilai xy=xy=
Misal a=(x+2016)(x2016)a=\sqrt{(x+2016)(x-2016)}
a2=x220162x2=a2+20162\begin{aligned}a^2&=x^2-2016^2\\x^2&=a^2+2016^2\end{aligned}

Misal b=(y+2017)(y2017)b=\sqrt{(y+2017)(y-2017)}
b2=y220172y2=b2+20172\begin{aligned}b^2&=y^2-2017^2\\y^2&=b^2+2017^2\end{aligned}

2016a+2017b=12(a2+20162+b2+20172)22016a+22017b=a2+20162+b2+20172a222016a+20162+b222017b+20172=0(a2016)2+(b2017)2=0\begin{aligned}2016a+2017b&=\dfrac12\left(a^2+2016^2+b^2+2017^2\right)\\2\cdot2016a+2\cdot2017b&=a^2+2016^2+b^2+2017^2\\a^2-2\cdot2016a+2016^2+b^2-2\cdot2017b+2017^2&=0\\(a-2016)^2+(b-2017)^2&=0\end{aligned}
didapat a=2016a=2016 dan b=2017b=2017

x2=20162+20162=220162x=20162\begin{aligned}x^2&=2016^2+2016^2\\&=2\cdot2016^2\\x&=2016\sqrt2\end{aligned}

y2=20172+20172=220172x=20172\begin{aligned}y^2&=2017^2+2017^2\\&=2\cdot2017^2\\x&=2017\sqrt2\end{aligned}

xy=2016220172=8132544\begin{aligned}xy&=2016\sqrt2\cdot2017\sqrt2\\&=\boxed{\boxed{8132544}}\end{aligned}

Related Posts

0 Response to "Olimpiade Zone : Aljabar [2]"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel