SBMPTN Zone : Integral Tak Tentu

Berikut ini adalah kumpulan soal mengenai Integral Tak Tentu tingkat dasar. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Teirma kasih.

No. 1

Jika g(x) dx=3f(x)+c\displaystyle\int g(x)\ dx=3\sqrt{f(x)}+c dan f(1)=f(1)=9f(1)=f'(1)=9 maka g(1)=g(1)=
  1. 11
  2. 99
  3. 33
  1. 32\dfrac32
  2. 92\dfrac92
g(x) dx=3f(x)+cg(x)=d(3f(x)+c)dx=d(3(f(x))12+c)dx=312(f(x))12f(x)=321(f(x))12f(x)=321f(x)f(x)=3f(x)2f(x)g(1)=3f(1)2f(1)=3(9)29=272(3)=92\begin{aligned}\displaystyle\int g(x)\ dx&=3\sqrt{f(x)}+c\\g(x)&=\dfrac{d\left(3\sqrt{f(x)}+c\right)}{dx}\\&=\dfrac{d\left(3\left(f(x)\right)^{\frac12}+c\right)}{dx}\\&=3\cdot\dfrac12\left(f(x)\right)^{-\frac12}f'(x)\\[10pt]&=\dfrac32\cdot\dfrac1{\left(f(x)\right)^{\frac12}}\cdot f'(x)\\[10pt]&=\dfrac32\cdot\dfrac1{\sqrt{f(x)}}\cdot f'(x)\\[10pt]&=\dfrac{3f'(x)}{2\sqrt{f(x)}}\\[10pt]g(1)&=\dfrac{3f'(1)}{2\sqrt{f(1)}}\\[10pt]&=\dfrac{3(9)}{2\sqrt9}\\[10pt]&=\dfrac{27}{2(3)}\\&=\boxed{\boxed{\dfrac92}}\end{aligned}

No. 2

11+ex dx=\displaystyle\int\dfrac1{1+e^x}\ dx=
Misal
u=1+exdu=ex dxdu=(u1) dxdx=1u1 du\begin{aligned}u&=1+e^x\\du&=e^x\ dx\\du&=(u-1)\ dx\\dx&=\dfrac1{u-1}\ du\end{aligned}

11+ex dx=1u1u1 du=(1u+1u1) du=lnu+lnu1+C=ln1+ex+ln1+ex1+C=ln1+ex+lnex+C=ln1+ex+x+C=xln1+ex+C\begin{aligned}\displaystyle\int\dfrac1{1+e^x}\ dx&=\displaystyle\int\dfrac1u\cdot\dfrac1{u-1}\ du\\&=\displaystyle\int\left(\dfrac{-1}u+\dfrac1{u-1}\right)\ du\\&=-\ln|u|+\ln|u-1|+C\\&=-\ln|1+e^x|+\ln|1+e^x-1|+C\\&=-\ln|1+e^x|+\ln|e^x|+C\\&=-\ln|1+e^x|+x+C\\&=\boxed{\boxed{x-\ln|1+e^x|+C}}\end{aligned}

Related Posts

0 Response to "SBMPTN Zone : Integral Tak Tentu"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel