Berikut ini adalah kumpulan soal mengenai Integral Tak Tentu tingkat dasar. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Teirma kasih.
No. 1
Jika
\displaystyle\int g(x)\ dx=3\sqrt{f(x)}+c dan
f(1)=f'(1)=9 maka
g(1)=
\(\begin{aligned}
\displaystyle\int g(x)\ dx&=3\sqrt{f(x)}+c\\
g(x)&=\dfrac{d\left(3\sqrt{f(x)}+c\right)}{dx}\\
&=\dfrac{d\left(3\left(f(x)\right)^{\frac12}+c\right)}{dx}\\
&=3\cdot\dfrac12\left(f(x)\right)^{-\frac12}f'(x)\\[10pt]
&=\dfrac32\cdot\dfrac1{\left(f(x)\right)^{\frac12}}\cdot f'(x)\\[10pt]
&=\dfrac32\cdot\dfrac1{\sqrt{f(x)}}\cdot f'(x)\\[10pt]
&=\dfrac{3f'(x)}{2\sqrt{f(x)}}\\[10pt]
g(1)&=\dfrac{3f'(1)}{2\sqrt{f(1)}}\\[10pt]
&=\dfrac{3(9)}{2\sqrt9}\\[10pt]
&=\dfrac{27}{2(3)}\\
&=\boxed{\boxed{\dfrac92}}
\end{aligned}\)
No. 2
\displaystyle\int\dfrac1{1+e^x}\ dx=
Misal
\(\begin{aligned}
u&=1+e^x\\
du&=e^x\ dx\\
du&=(u-1)\ dx\\
dx&=\dfrac1{u-1}\ du
\end{aligned}\)
\(\begin{aligned}
\displaystyle\int\dfrac1{1+e^x}\ dx&=\displaystyle\int\dfrac1u\cdot\dfrac1{u-1}\ du\\
&=\displaystyle\int\left(\dfrac{-1}u+\dfrac1{u-1}\right)\ du\\
&=-\ln|u|+\ln|u-1|+C\\
&=-\ln|1+e^x|+\ln|1+e^x-1|+C\\
&=-\ln|1+e^x|+\ln|e^x|+C\\
&=-\ln|1+e^x|+x+C\\
&=\boxed{\boxed{x-\ln|1+e^x|+C}}
\end{aligned}\)
0 Response to "SBMPTN Zone : Integral Tak Tentu"
Post a Comment