Berikut ini adalah kumpulan soal mengenai Integral Tak Tentu tingkat dasar. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Teirma kasih.
No. 1
Jika
∫ g ( x ) d x = 3 f ( x ) + c \displaystyle\int g(x)\ dx=3\sqrt{f(x)}+c ∫ g ( x ) d x = 3 f ( x ) + c dan
f ( 1 ) = f ′ ( 1 ) = 9 f(1)=f'(1)=9 f ( 1 ) = f ′ ( 1 ) = 9 maka
g ( 1 ) = g(1)= g ( 1 ) =
3 2 \dfrac32 2 3
9 2 \dfrac92 2 9
∫ g ( x ) d x g ( x ) g ( 1 ) = 3 f ( x ) + c = d x d ( 3 f ( x ) + c ) = d x d ( 3 ( f ( x ) ) 2 1 + c ) = 3 ⋅ 2 1 ( f ( x ) ) − 2 1 f ′ ( x ) = 2 3 ⋅ ( f ( x ) ) 2 1 1 ⋅ f ′ ( x ) = 2 3 ⋅ f ( x ) 1 ⋅ f ′ ( x ) = 2 f ( x ) 3 f ′ ( x ) = 2 f ( 1 ) 3 f ′ ( 1 ) = 2 9 3 ( 9 ) = 2 ( 3 ) 2 7 = 2 9
No. 2
∫ 1 1 + e x d x = \displaystyle\int\dfrac1{1+e^x}\ dx= ∫ 1 + e x 1 d x =
Misal
u d u d u d x = 1 + e x = e x d x = ( u − 1 ) d x = u − 1 1 d u
∫ 1 + e x 1 d x = ∫ u 1 ⋅ u − 1 1 d u = ∫ ( u − 1 + u − 1 1 ) d u = − ln ∣ u ∣ + ln ∣ u − 1 ∣ + C = − ln ∣ 1 + e x ∣ + ln ∣ 1 + e x − 1 ∣ + C = − ln ∣ 1 + e x ∣ + ln ∣ e x ∣ + C = − ln ∣ 1 + e x ∣ + x + C = x − ln ∣ 1 + e x ∣ + C
0 Response to "SBMPTN Zone : Integral Tak Tentu"
Post a Comment