Berikut ini adalah kumpulan soal mengenai Integral Tak Tentu tingkat dasar. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Teirma kasih.
No. 1
\displaystyle\int\dfrac{x+2}{\sqrt{x^2+4x-6}}\ dx= ....
- {\dfrac18\sqrt{x^2+4x-6}+C}
- {\dfrac14\sqrt{x^2+4x-6}+C}
- {\dfrac12\sqrt{x^2+4x-6}+C}
- {\sqrt{x^2+4x-6}+C}
- {2\sqrt{x^2+4x-6}+C}
Misal u=x^2+4x-6
\(\begin{aligned}
du&=(2x+4)\ dx\\
du&=2(x+2)\ dx\\
(x+2)\ dx&=\dfrac12du
\end{aligned}\)
\(\begin{aligned}
\displaystyle\int\dfrac{x+2}{\sqrt{x^2+4x-6}}\ dx&=\dfrac12\displaystyle\int\dfrac1{\sqrt{u}}\ du\\
&=\dfrac12\displaystyle\int\dfrac1{u^{\frac12}}\ du\\
&=\dfrac12\displaystyle\int u^{-\frac12}\ du\\
&=\dfrac12\left(2u^{\frac12}\right)+C\\
&=\sqrt{u}+C\\
&=\boxed{\boxed{\sqrt{x^2+4x-6}+C}}
\end{aligned}\)
No. 2
Hasil dari
\displaystyle\int-720x^2\sqrt{9-4x^3}\ dx=
- {80\left(9-4x^3\right)\sqrt{9-4x^3}+C}
- {60\left(9-4x^3\right)\sqrt{9-4x^3}+C}
- {40\left(9-4x^3\right)\sqrt{9-4x^3}+C}
- {20\left(9-4x^3\right)\sqrt{9-4x^3}+C}
- {10\left(9-4x^3\right)\sqrt{9-4x^3}+C}
Misal u=9-4x^3
\(\begin{aligned}
du&=-12x^2\ dx
\end{aligned}\)
\(\begin{aligned}
\displaystyle\int-720x^2\sqrt{9-4x^3}\ dx&=\displaystyle\int60\left(-12x^2\right)\sqrt{9-4x^3}\ dx\\
&=\displaystyle\int60\sqrt{u}\ du\\
&=\displaystyle\int60u^{\frac12}\ du\\
&=60\cdot\dfrac23u^{\frac32}+C\\
&=40u\sqrt{u}+C\\
&=\boxed{\boxed{40\left(9-4x^3\right)\sqrt{9-4x^3}+C}}
\end{aligned}\)
No. 3
Hasil dari
\displaystyle\intop_{-1}^03x\sqrt[7]{1+x}\ dx=
- -\dfrac{120}{147}
- -\dfrac{157}{120}
- -\dfrac{147}{120}
- \dfrac{147}{120}
- \dfrac{120}{147}
CARA 1: SUBSTITUSI
Misal
u=1+x\rightarrow x=u-1
du=dx
\(\begin{aligned}
\displaystyle\intop_{-1}^03x\sqrt[7]{1+x}\ dx&=\displaystyle\intop_{-1}^03(u-1)\sqrt[7]{u}\ du\\
&=\displaystyle\intop_{-1}^03(u-1)u^{\frac17}\ du\\
&=\displaystyle\intop_{-1}^0\left(3u^{\frac87}-3u^{\frac17}\right)\ du\\
&=\left[3\cdot\dfrac7{15}u^{\frac{15}7}-3\cdot\dfrac78u^{\frac87}\right]_{-1}^0\\
&=\left[\dfrac75(1+x)^{\frac{15}7}-\dfrac{21}8(1+x)^{\frac87}\right]_{-1}^0\\
&=\left[\dfrac75(1+0)^{\frac{15}7}-\dfrac{21}8(1+0)^{\frac87}\right]-\left[\dfrac75(1+(-1))^{\frac{15}7}-\dfrac{21}8(1+(-1))^{\frac87}\right]\\
&=\left[\dfrac75(1)^{\frac{15}7}-\dfrac{21}8(1)^{\frac87}\right]-\left[\dfrac75(0)^{\frac{15}7}-\dfrac{21}8(0)^{\frac87}\right]\\
&=\left[\dfrac75(1)-\dfrac{21}8(1)\right]-\left[\dfrac75(0)-\dfrac{21}8(0)\right]\\
&=\left[\dfrac75-\dfrac{21}8\right]-\left[0-0\right]\\
&=-\dfrac{49}{40}\\
&=\boxed{\boxed{-\dfrac{147}{120}}}
\end{aligned}\)
CARA 2: PARSIAL
u | dv |
3x | \sqrt[7]{1+x}=(1+x)^{\frac17} |
3 | \dfrac78(1+x)^{\frac87} |
0 | \dfrac78\cdot\dfrac7{15}(1+x)^{\frac{15}7}=\dfrac{49}{120}(1+x)^{\frac{15}7} |
\(\begin{aligned}
\displaystyle\intop_{-1}^03x\sqrt[7]{1+x}\ dx&=\left[3x\cdot\dfrac78(1+x)^{\frac87}-3\cdot\dfrac{49}{120}(1+x)^{\frac{15}7}\right]_{-1}^0\\
&=\left[\dfrac{21}8x(1+x)^{\frac87}-\cdot\dfrac{147}{120}(1+x)^{\frac{15}7}\right]_{-1}^0\\
&=\left[\dfrac{21}8(0)(1+0)^{\frac87}-\cdot\dfrac{147}{120}(1+0)^{\frac{15}7}\right]-\left[\dfrac{21}8(-1)(1+(-1))^{\frac87}-\cdot\dfrac{147}{120}(1+(-1))^{\frac{15}7}\right]\\
&=\left[0-\cdot\dfrac{147}{120}(1)^{\frac{15}7}\right]-\left[-\dfrac{21}8(0)^{\frac87}-\cdot\dfrac{147}{120}(0)^{\frac{15}7}\right]\\
&=\left[-\cdot\dfrac{147}{120}(1)\right]-0\\
&=\boxed{\boxed{-\dfrac{147}{120}}}
\end{aligned}\)
No. 4
\displaystyle\int\left(\dfrac1{\sqrt{x}}-\sqrt{x}\right)^2\ dx adalah
- {\dfrac12x^2-2x+\ln x+C}
- {x^2-2+\dfrac1x+C}
- {x^2-2x+x^{-1}+C}
- {\dfrac12x^2-2x+x^{-1}+C}
- {\dfrac12x^2-2+\dfrac1x+C}
\(\begin{aligned}
\displaystyle\int\left(\dfrac1{\sqrt{x}}-\sqrt{x}\right)^2\ dx&=\displaystyle\int\left(\left(\dfrac1{\sqrt{x}}\right)^2-2\cdot\dfrac1{\sqrt{x}}\cdot\sqrt{x}+\left(\sqrt{x}\right)^2\right)\ dx\\
&=\displaystyle\int\left(\dfrac1x-2+x\right)\ dx\\
&=\ln x-2x+\dfrac12x^2+C\\
&=\boxed{\boxed{\dfrac12x^2-2x+\ln x+C}}
\end{aligned}\)
No. 5
\displaystyle\int2\sqrt{x}\ dx=
\(\begin{aligned}
\displaystyle\int2\sqrt{x}\ dx&=\displaystyle\int2x^{\frac12}\ dx\\
&=2\cdot\dfrac23x^{\frac32}+C\\
&=\boxed{\boxed{\dfrac43x\sqrt{x}+C}}
\end{aligned}\)
0 Response to "Exercise Zone : Integral Tak Tentu"
Post a Comment