Exercise Zone : Integral Tak Tentu

Berikut ini adalah kumpulan soal mengenai Integral Tak Tentu tingkat dasar. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Teirma kasih.

No. 1

x+2x2+4x6 dx=\displaystyle\int\dfrac{x+2}{\sqrt{x^2+4x-6}}\ dx= ....
  1. 18x2+4x6+C{\dfrac18\sqrt{x^2+4x-6}+C}
  2. 14x2+4x6+C{\dfrac14\sqrt{x^2+4x-6}+C}
  3. 12x2+4x6+C{\dfrac12\sqrt{x^2+4x-6}+C}
  1. x2+4x6+C{\sqrt{x^2+4x-6}+C}
  2. 2x2+4x6+C{2\sqrt{x^2+4x-6}+C}
Misal u=x2+4x6u=x^2+4x-6
du=(2x+4) dxdu=2(x+2) dx(x+2) dx=12du\begin{aligned}du&=(2x+4)\ dx\\du&=2(x+2)\ dx\\(x+2)\ dx&=\dfrac12du\end{aligned}

x+2x2+4x6 dx=121u du=121u12 du=12u12 du=12(2u12)+C=u+C=x2+4x6+C\begin{aligned}\displaystyle\int\dfrac{x+2}{\sqrt{x^2+4x-6}}\ dx&=\dfrac12\displaystyle\int\dfrac1{\sqrt{u}}\ du\\&=\dfrac12\displaystyle\int\dfrac1{u^{\frac12}}\ du\\&=\dfrac12\displaystyle\int u^{-\frac12}\ du\\&=\dfrac12\left(2u^{\frac12}\right)+C\\&=\sqrt{u}+C\\&=\boxed{\boxed{\sqrt{x^2+4x-6}+C}}\end{aligned}

No. 2

Hasil dari 720x294x3 dx=\displaystyle\int-720x^2\sqrt{9-4x^3}\ dx=
  1. 80(94x3)94x3+C{80\left(9-4x^3\right)\sqrt{9-4x^3}+C}
  2. 60(94x3)94x3+C{60\left(9-4x^3\right)\sqrt{9-4x^3}+C}
  3. 40(94x3)94x3+C{40\left(9-4x^3\right)\sqrt{9-4x^3}+C}
  1. 20(94x3)94x3+C{20\left(9-4x^3\right)\sqrt{9-4x^3}+C}
  2. 10(94x3)94x3+C{10\left(9-4x^3\right)\sqrt{9-4x^3}+C}
Misal u=94x3u=9-4x^3
du=12x2 dx\begin{aligned}du&=-12x^2\ dx\end{aligned}

720x294x3 dx=60(12x2)94x3 dx=60u du=60u12 du=6023u32+C=40uu+C=40(94x3)94x3+C\begin{aligned}\displaystyle\int-720x^2\sqrt{9-4x^3}\ dx&=\displaystyle\int60\left(-12x^2\right)\sqrt{9-4x^3}\ dx\\&=\displaystyle\int60\sqrt{u}\ du\\&=\displaystyle\int60u^{\frac12}\ du\\&=60\cdot\dfrac23u^{\frac32}+C\\&=40u\sqrt{u}+C\\&=\boxed{\boxed{40\left(9-4x^3\right)\sqrt{9-4x^3}+C}}\end{aligned}

No. 3

Hasil dari 103x1+x7 dx=\displaystyle\intop_{-1}^03x\sqrt[7]{1+x}\ dx=
  1. 120147-\dfrac{120}{147}
  2. 157120-\dfrac{157}{120}
  3. 147120-\dfrac{147}{120}
  1. 147120\dfrac{147}{120}
  2. 120147\dfrac{120}{147}

CARA 1: SUBSTITUSI

Misal u=1+xx=u1u=1+x\rightarrow x=u-1
du=dxdu=dx

103x1+x7 dx=103(u1)u7 du=103(u1)u17 du=10(3u873u17) du=[3715u157378u87]10=[75(1+x)157218(1+x)87]10=[75(1+0)157218(1+0)87][75(1+(1))157218(1+(1))87]=[75(1)157218(1)87][75(0)157218(0)87]=[75(1)218(1)][75(0)218(0)]=[75218][00]=4940=147120\begin{aligned}\displaystyle\intop_{-1}^03x\sqrt[7]{1+x}\ dx&=\displaystyle\intop_{-1}^03(u-1)\sqrt[7]{u}\ du\\&=\displaystyle\intop_{-1}^03(u-1)u^{\frac17}\ du\\&=\displaystyle\intop_{-1}^0\left(3u^{\frac87}-3u^{\frac17}\right)\ du\\&=\left[3\cdot\dfrac7{15}u^{\frac{15}7}-3\cdot\dfrac78u^{\frac87}\right]_{-1}^0\\&=\left[\dfrac75(1+x)^{\frac{15}7}-\dfrac{21}8(1+x)^{\frac87}\right]_{-1}^0\\&=\left[\dfrac75(1+0)^{\frac{15}7}-\dfrac{21}8(1+0)^{\frac87}\right]-\left[\dfrac75(1+(-1))^{\frac{15}7}-\dfrac{21}8(1+(-1))^{\frac87}\right]\\&=\left[\dfrac75(1)^{\frac{15}7}-\dfrac{21}8(1)^{\frac87}\right]-\left[\dfrac75(0)^{\frac{15}7}-\dfrac{21}8(0)^{\frac87}\right]\\&=\left[\dfrac75(1)-\dfrac{21}8(1)\right]-\left[\dfrac75(0)-\dfrac{21}8(0)\right]\\&=\left[\dfrac75-\dfrac{21}8\right]-\left[0-0\right]\\&=-\dfrac{49}{40}\\&=\boxed{\boxed{-\dfrac{147}{120}}}\end{aligned}

CARA 2: PARSIAL

uudvdv
3x3x1+x7=(1+x)17\sqrt[7]{1+x}=(1+x)^{\frac17}
3378(1+x)87\dfrac78(1+x)^{\frac87}
0078715(1+x)157=49120(1+x)157\dfrac78\cdot\dfrac7{15}(1+x)^{\frac{15}7}=\dfrac{49}{120}(1+x)^{\frac{15}7}
103x1+x7 dx=[3x78(1+x)87349120(1+x)157]10=[218x(1+x)87147120(1+x)157]10=[218(0)(1+0)87147120(1+0)157][218(1)(1+(1))87147120(1+(1))157]=[0147120(1)157][218(0)87147120(0)157]=[147120(1)]0=147120\begin{aligned}\displaystyle\intop_{-1}^03x\sqrt[7]{1+x}\ dx&=\left[3x\cdot\dfrac78(1+x)^{\frac87}-3\cdot\dfrac{49}{120}(1+x)^{\frac{15}7}\right]_{-1}^0\\&=\left[\dfrac{21}8x(1+x)^{\frac87}-\cdot\dfrac{147}{120}(1+x)^{\frac{15}7}\right]_{-1}^0\\&=\left[\dfrac{21}8(0)(1+0)^{\frac87}-\cdot\dfrac{147}{120}(1+0)^{\frac{15}7}\right]-\left[\dfrac{21}8(-1)(1+(-1))^{\frac87}-\cdot\dfrac{147}{120}(1+(-1))^{\frac{15}7}\right]\\&=\left[0-\cdot\dfrac{147}{120}(1)^{\frac{15}7}\right]-\left[-\dfrac{21}8(0)^{\frac87}-\cdot\dfrac{147}{120}(0)^{\frac{15}7}\right]\\&=\left[-\cdot\dfrac{147}{120}(1)\right]-0\\&=\boxed{\boxed{-\dfrac{147}{120}}}\end{aligned}

No. 4

(1xx)2 dx\displaystyle\int\left(\dfrac1{\sqrt{x}}-\sqrt{x}\right)^2\ dx adalah
  1. 12x22x+lnx+C{\dfrac12x^2-2x+\ln x+C}
  2. x22+1x+C{x^2-2+\dfrac1x+C}
  3. x22x+x1+C{x^2-2x+x^{-1}+C}
  1. 12x22x+x1+C{\dfrac12x^2-2x+x^{-1}+C}
  2. 12x22+1x+C{\dfrac12x^2-2+\dfrac1x+C}
(1xx)2 dx=((1x)221xx+(x)2) dx=(1x2+x) dx=lnx2x+12x2+C=12x22x+lnx+C\begin{aligned}\displaystyle\int\left(\dfrac1{\sqrt{x}}-\sqrt{x}\right)^2\ dx&=\displaystyle\int\left(\left(\dfrac1{\sqrt{x}}\right)^2-2\cdot\dfrac1{\sqrt{x}}\cdot\sqrt{x}+\left(\sqrt{x}\right)^2\right)\ dx\\&=\displaystyle\int\left(\dfrac1x-2+x\right)\ dx\\&=\ln x-2x+\dfrac12x^2+C\\&=\boxed{\boxed{\dfrac12x^2-2x+\ln x+C}}\end{aligned}

No. 5

2x dx=\displaystyle\int2\sqrt{x}\ dx=
2x dx=2x12 dx=223x32+C=43xx+C\begin{aligned}\displaystyle\int2\sqrt{x}\ dx&=\displaystyle\int2x^{\frac12}\ dx\\&=2\cdot\dfrac23x^{\frac32}+C\\&=\boxed{\boxed{\dfrac43x\sqrt{x}+C}}\end{aligned}

Related Posts

0 Response to "Exercise Zone : Integral Tak Tentu"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel