Berikut ini adalah kumpulan soal mengenai Integral Tak Tentu tingkat dasar. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Teirma kasih.
No. 1
∫ x + 2 x 2 + 4 x − 6 d x = \displaystyle\int\dfrac{x+2}{\sqrt{x^2+4x-6}}\ dx= ∫ x 2 + 4 x − 6 x + 2 d x = ....
1 8 x 2 + 4 x − 6 + C {\dfrac18\sqrt{x^2+4x-6}+C} 8 1 x 2 + 4 x − 6 + C
1 4 x 2 + 4 x − 6 + C {\dfrac14\sqrt{x^2+4x-6}+C} 4 1 x 2 + 4 x − 6 + C
1 2 x 2 + 4 x − 6 + C {\dfrac12\sqrt{x^2+4x-6}+C} 2 1 x 2 + 4 x − 6 + C
x 2 + 4 x − 6 + C {\sqrt{x^2+4x-6}+C} x 2 + 4 x − 6 + C
2 x 2 + 4 x − 6 + C {2\sqrt{x^2+4x-6}+C} 2 x 2 + 4 x − 6 + C
Misal
u = x 2 + 4 x − 6 u=x^2+4x-6 u = x 2 + 4 x − 6
d u d u ( x + 2 ) d x = ( 2 x + 4 ) d x = 2 ( x + 2 ) d x = 2 1 d u
∫ x 2 + 4 x − 6 x + 2 d x = 2 1 ∫ u 1 d u = 2 1 ∫ u 2 1 1 d u = 2 1 ∫ u − 2 1 d u = 2 1 ( 2 u 2 1 ) + C = u + C = x 2 + 4 x − 6 + C
No. 2
Hasil dari
∫ − 720 x 2 9 − 4 x 3 d x = \displaystyle\int-720x^2\sqrt{9-4x^3}\ dx= ∫ − 7 2 0 x 2 9 − 4 x 3 d x =
80 ( 9 − 4 x 3 ) 9 − 4 x 3 + C {80\left(9-4x^3\right)\sqrt{9-4x^3}+C} 8 0 ( 9 − 4 x 3 ) 9 − 4 x 3 + C
60 ( 9 − 4 x 3 ) 9 − 4 x 3 + C {60\left(9-4x^3\right)\sqrt{9-4x^3}+C} 6 0 ( 9 − 4 x 3 ) 9 − 4 x 3 + C
40 ( 9 − 4 x 3 ) 9 − 4 x 3 + C {40\left(9-4x^3\right)\sqrt{9-4x^3}+C} 4 0 ( 9 − 4 x 3 ) 9 − 4 x 3 + C
20 ( 9 − 4 x 3 ) 9 − 4 x 3 + C {20\left(9-4x^3\right)\sqrt{9-4x^3}+C} 2 0 ( 9 − 4 x 3 ) 9 − 4 x 3 + C
10 ( 9 − 4 x 3 ) 9 − 4 x 3 + C {10\left(9-4x^3\right)\sqrt{9-4x^3}+C} 1 0 ( 9 − 4 x 3 ) 9 − 4 x 3 + C
Misal
u = 9 − 4 x 3 u=9-4x^3 u = 9 − 4 x 3
d u = − 1 2 x 2 d x
∫ − 7 2 0 x 2 9 − 4 x 3 d x = ∫ 6 0 ( − 1 2 x 2 ) 9 − 4 x 3 d x = ∫ 6 0 u d u = ∫ 6 0 u 2 1 d u = 6 0 ⋅ 3 2 u 2 3 + C = 4 0 u u + C = 4 0 ( 9 − 4 x 3 ) 9 − 4 x 3 + C
No. 3
Hasil dari
∫ − 1 0 3 x 1 + x 7 d x = \displaystyle\intop_{-1}^03x\sqrt[7]{1+x}\ dx= − 1 ∫ 0 3 x 7 1 + x d x =
− 120 147 -\dfrac{120}{147} − 1 4 7 1 2 0
− 157 120 -\dfrac{157}{120} − 1 2 0 1 5 7
− 147 120 -\dfrac{147}{120} − 1 2 0 1 4 7
147 120 \dfrac{147}{120} 1 2 0 1 4 7
120 147 \dfrac{120}{147} 1 4 7 1 2 0
CARA 1: SUBSTITUSI
Misal
u = 1 + x → x = u − 1 u=1+x\rightarrow x=u-1 u = 1 + x → x = u − 1
d u = d x du=dx d u = d x
− 1 ∫ 0 3 x 7 1 + x d x = − 1 ∫ 0 3 ( u − 1 ) 7 u d u = − 1 ∫ 0 3 ( u − 1 ) u 7 1 d u = − 1 ∫ 0 ( 3 u 7 8 − 3 u 7 1 ) d u = [ 3 ⋅ 1 5 7 u 7 1 5 − 3 ⋅ 8 7 u 7 8 ] − 1 0 = [ 5 7 ( 1 + x ) 7 1 5 − 8 2 1 ( 1 + x ) 7 8 ] − 1 0 = [ 5 7 ( 1 + 0 ) 7 1 5 − 8 2 1 ( 1 + 0 ) 7 8 ] − [ 5 7 ( 1 + ( − 1 ) ) 7 1 5 − 8 2 1 ( 1 + ( − 1 ) ) 7 8 ] = [ 5 7 ( 1 ) 7 1 5 − 8 2 1 ( 1 ) 7 8 ] − [ 5 7 ( 0 ) 7 1 5 − 8 2 1 ( 0 ) 7 8 ] = [ 5 7 ( 1 ) − 8 2 1 ( 1 ) ] − [ 5 7 ( 0 ) − 8 2 1 ( 0 ) ] = [ 5 7 − 8 2 1 ] − [ 0 − 0 ] = − 4 0 4 9 = − 1 2 0 1 4 7
CARA 2: PARSIAL
u u u d v dv d v
3 x 3x 3 x 1 + x 7 = ( 1 + x ) 1 7 \sqrt[7]{1+x}=(1+x)^{\frac17} 7 1 + x = ( 1 + x ) 7 1
3 3 3 7 8 ( 1 + x ) 8 7 \dfrac78(1+x)^{\frac87} 8 7 ( 1 + x ) 7 8
0 0 0 7 8 ⋅ 7 15 ( 1 + x ) 15 7 = 49 120 ( 1 + x ) 15 7 \dfrac78\cdot\dfrac7{15}(1+x)^{\frac{15}7}=\dfrac{49}{120}(1+x)^{\frac{15}7} 8 7 ⋅ 1 5 7 ( 1 + x ) 7 1 5 = 1 2 0 4 9 ( 1 + x ) 7 1 5
− 1 ∫ 0 3 x 7 1 + x d x = [ 3 x ⋅ 8 7 ( 1 + x ) 7 8 − 3 ⋅ 1 2 0 4 9 ( 1 + x ) 7 1 5 ] − 1 0 = [ 8 2 1 x ( 1 + x ) 7 8 − ⋅ 1 2 0 1 4 7 ( 1 + x ) 7 1 5 ] − 1 0 = [ 8 2 1 ( 0 ) ( 1 + 0 ) 7 8 − ⋅ 1 2 0 1 4 7 ( 1 + 0 ) 7 1 5 ] − [ 8 2 1 ( − 1 ) ( 1 + ( − 1 ) ) 7 8 − ⋅ 1 2 0 1 4 7 ( 1 + ( − 1 ) ) 7 1 5 ] = [ 0 − ⋅ 1 2 0 1 4 7 ( 1 ) 7 1 5 ] − [ − 8 2 1 ( 0 ) 7 8 − ⋅ 1 2 0 1 4 7 ( 0 ) 7 1 5 ] = [ − ⋅ 1 2 0 1 4 7 ( 1 ) ] − 0 = − 1 2 0 1 4 7
No. 4
∫ ( 1 x − x ) 2 d x \displaystyle\int\left(\dfrac1{\sqrt{x}}-\sqrt{x}\right)^2\ dx ∫ ( x 1 − x ) 2 d x adalah
1 2 x 2 − 2 x + ln x + C {\dfrac12x^2-2x+\ln x+C} 2 1 x 2 − 2 x + ln x + C
x 2 − 2 + 1 x + C {x^2-2+\dfrac1x+C} x 2 − 2 + x 1 + C
x 2 − 2 x + x − 1 + C {x^2-2x+x^{-1}+C} x 2 − 2 x + x − 1 + C
1 2 x 2 − 2 x + x − 1 + C {\dfrac12x^2-2x+x^{-1}+C} 2 1 x 2 − 2 x + x − 1 + C
1 2 x 2 − 2 + 1 x + C {\dfrac12x^2-2+\dfrac1x+C} 2 1 x 2 − 2 + x 1 + C
∫ ( x 1 − x ) 2 d x = ∫ ( ( x 1 ) 2 − 2 ⋅ x 1 ⋅ x + ( x ) 2 ) d x = ∫ ( x 1 − 2 + x ) d x = ln x − 2 x + 2 1 x 2 + C = 2 1 x 2 − 2 x + ln x + C
No. 5
∫ 2 x d x = \displaystyle\int2\sqrt{x}\ dx= ∫ 2 x d x =
∫ 2 x d x = ∫ 2 x 2 1 d x = 2 ⋅ 3 2 x 2 3 + C = 3 4 x x + C
0 Response to "Exercise Zone : Integral Tak Tentu"
Post a Comment