SBMPTN Zone : Fungsi

Berikut ini adalah kumpulan soal mengenai Fungsi tingkat SBMPTN. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Terima kasih.
  • 1
  • 2

No. 1

Diberikan fungsi f memenuhi persamaan 2f(x+2)+f(-x)=x-3 untuk setiap bilangan bulat x. Nilai f(2) adalah ....
  1. \dfrac13
  2. -\dfrac13
  3. -3
  1. 3
  2. -2
Untuk x=0,
\(\begin{aligned} 2f(0+2)+f(-0)&=0-3\\ 2f(2)+f(0)&=-3\\ 4f(2)+2f(0)&=-6 \end{aligned}\)

Untuk x=-2,
\(\begin{aligned} 2f(-2+2)+f(-(-2))&=-2-3\\ 2f(0)+f(2)&=-5\\ f(2)+2f(0)&=-5 \end{aligned}\)

\(\begin{aligned} 4f(2)+2f(0)&=-6\\ f(2)+2f(0)&=-5\qquad-\\\hline 3f(2)&=-1\\ f(2)&=\boxed{\boxed{-\dfrac13}} \end{aligned}\)

No. 2

Diketahui {f(x)=ax+b} dengan {f^{-1}(11)=2} dan {f^{-1}(8)=1} dengan f^{-1} menyatakan fungsi invers f. Nilai \displaystyle\lim_{h\to0}\dfrac{(3+h)f(3)-3f(3+h)}h= ....
  1. 4
  2. 5
  3. 6
  1. 7
  2. 8
\(\begin{aligned} f^{-1}(11)&=2\\ f(2)&=11\\ 2a+b&=11 \end{aligned}\)

\(\begin{aligned} f^{-1}(8)&=1\\ f(1)&=8\\ a+b&=8 \end{aligned}\)

\(\begin{aligned} 2a+b&=11\\ a+b&=8\qquad-\\\hline a&=3 \end{aligned}\)

\(\begin{aligned} a+b&=8\\ 3+b&=8\\ b&=5 \end{aligned}\)

f(x)=3x+5

\(\begin{aligned} \displaystyle\lim_{h\to0}\dfrac{(3+h)f(3)-3f(3+h)}h&=\displaystyle\lim_{h\to0}\dfrac{(3+h)(3(3)+5)-3(3(3+h)+5)}h\\ &=\displaystyle\lim_{h\to0}\dfrac{(3+h)(9+5)-3(9+3h+5)}h\\ &=\displaystyle\lim_{h\to0}\dfrac{(3+h)(14)-3(14+3h)}h\\ &=\displaystyle\lim_{h\to0}\dfrac{42+14h-42+9h}h\\ &=\displaystyle\lim_{h\to0}\dfrac{5h}h\\ &=\displaystyle\lim_{h\to0}5\\ &=\boxed{\boxed{5}} \end{aligned}\)

No. 3

{f\left(x^2+3ax+1\right)=2x-1} dan {f(5)=3}. Hitung nilai a
\(\begin{aligned} 2x-1&=3\\ 2x&=4\\ x&=2 \end{aligned}\)
\(\begin{aligned} x^2+3ax+1&=5\\ 2^2+3a(2)+1&=5\\ 4+6a+1&=5\\ 6a+5&=5\\ 6a&=0\\ a&=\boxed{\boxed{0}} \end{aligned}\)

No. 4

Jika {f(x)=3h(x)+4}; {g(x)=\dfrac{\sqrt{f(x)}}9}; dan {h(x)=3x^2 + 2x-1}, maka nilai dari {2f(3)\cdot g(2)-f^2(3)-g^2(2)} adalah ....
  1. -\dfrac{797449}{81}
  2. \dfrac{797449}{81}
  3. -\dfrac{893}9
  1. \dfrac{893749}9
  2. \dfrac{893749}{81}
\(\begin{aligned} 2f(3)\cdot g(2)-f^2(3)-g^2(2)&=-\left(f(3)-g(2)\right)^2\\ &=-\left(3h(3)+4-\dfrac{\sqrt{f(2)}}9\right)^2\\ &=-\left(3\left(3(3)^2+2(3)-1\right)+4-\dfrac{\sqrt{3h(2)+4}}9\right)^2\\ &=-\left(3\left(27+6-1\right)+4-\dfrac{\sqrt{3\left(3(2)^2+2(2)-1\right)+4}}9\right)^2\\ &=-\left(3\left(32\right)+4-\dfrac{\sqrt{3\left(12+4-1\right)+4}}9\right)^2\\ &=-\left(96+4-\dfrac{\sqrt{3\left(15\right)+4}}9\right)^2\\ &=-\left(100-\dfrac{\sqrt{45+4}}9\right)^2\\ &=-\left(100-\dfrac{\sqrt{49}}9\right)^2\\ &=-\left(100-\dfrac79\right)^2\\ &=-\left(\dfrac{893}9\right)^2\\ &=-\dfrac{797449}{81} \end{aligned}\)

No. 5

Jika f(x)=a^x, maka untuk setiap x dan y berlaku
  1. {f(x)f(y)=f(xy)}
  2. {f(x)f(y)=f(x+y)}
  3. {f(x)f(y)=f(x)+f(y)}
  1. {f(x)+f(y)=f(xy)}
  2. {f(x)+f(y)=f(x+y)}
\begin{aligned} f(x)f(y)&=a^xa^y\\ &=a^{x+y}\\ &=f(x+y) \end{aligned}

No. 6

Bila f(x) memenuhi {2f(x)+f(1-x)=x^2} untuk semua nilai real x, maka f(x) sama dengan
  1. {\dfrac12x^2-\dfrac32x+\dfrac12}
  2. {\dfrac19x^2+\dfrac89x-\dfrac13}
  3. {\dfrac23x^2+\dfrac12x-\dfrac13}
  1. {\dfrac13x^2+\dfrac23x-\dfrac13}
  2. {\dfrac19x^2+x-\dfrac49}
\(\begin{aligned} 2f(1-x)+f(1-(1-x))&=(1-x)^2\\ 2f(1-x)+f(1-1+x)&=1-2x+x^2\\ 2f(1-x)+f(x)&=x^2-2x+1\\ f(x)+2f(1-x)&=x^2-2x+1 \end{aligned}\)

\(\begin{aligned} 2f(x)+f(1-x)&=x^2&\color{red}{\times 2}\\ f(x)+2f(1-x)&=x^2-2x+1& \end{aligned}\)

\(\begin{aligned} 4f(x)+2f(1-x)&=2x^2\\ f(x)+2f(1-x)&=x^2-2x+1&\color{red}{-}\\\hline 3f(x)&=x^2+2x-1\\ f(x)&=\dfrac13x^2+\dfrac23x-\dfrac13 \end{aligned}\)

No. 7

Jika {(f\circ g)(x)=\dfrac{6x+3}{2x-5}} dan {g(x)=4x-11}, maka hasil dari {\displaystyle\intop_5^8\dfrac{f^{-1}(x-1)}{g(3)}\ dx} adalah
  1. {72\ln2-3}
  2. {36\ln 3-2}
  3. {36\ln 2-6}
  1. {36\ln 2 - 3}
  2. {72\ln 3-2}
\(\begin{aligned} (f\circ g)(x)&=\dfrac{6x+3}{2x-5}\\[10pt] f(g(x))&=\dfrac{12x+6}{4x-10}\\[10pt] f(4x-11)&=\dfrac{3(4x-11)+39}{4x-11+1}\\[10pt] f(x)&=\dfrac{3x+39}{x+1}\\[10pt] f^{-1}(x)&=\dfrac{-x+39}{x-3}\\[10pt] f^{-1}(x-1)&=\dfrac{-(x-1)+39}{x-1-3}\\[10pt] &=\dfrac{-x+1+39}{x-4}\\[10pt] &=\dfrac{-x+40}{x-4} \end{aligned}\)

\(\begin{aligned} \displaystyle\intop_5^8\dfrac{f^{-1}(x-1)}{g(3)}\ dx&=\displaystyle\intop_5^8\dfrac{\dfrac{-x+40}{x-4}}{4(3)-11}\ dx\\ &=\displaystyle\intop_5^8\dfrac{\dfrac{-x+4+36}{x-4}}{12-11}\ dx\\ &=\displaystyle\intop_5^8\dfrac{-1+\dfrac{36}{x-4}}1\ dx\\ &=\displaystyle\intop_5^8\left(-1+\dfrac{36}{x-4}\right)\ dx\\ &=\left[-x+36\ln|x-4|\right]_5^8\\ &=\left[-8+36\ln|8-4|\right]-\left[-5+36\ln|5-4|\right]\\ &=\left[-8+36\ln4\right]-\left[-5+36\ln1\right]\\ &=\left[-8+36\ln2^2\right]-\left[-5-42(0)\right]\\ &=\left[-8+72\ln2\right]-\left[-5\right]\\ &=-8+72\ln2+5\\ &=\boxed{\boxed{72\ln2-3}} \end{aligned}\)

No. 8

Jika {f\left(\dfrac2{\sqrt{2x-1}}\right)=x} dengan x\geq\dfrac12, maka f(1)=
  1. 4
  2. 2
  3. \dfrac12
  1. \dfrac52
  2. \dfrac32
\(\begin{aligned} \dfrac2{\sqrt{2x-1}}&=1\\ \sqrt{2x-1}&=2\\ 2x-1&=4\\ 2x&=5\\ x&=\dfrac52 \end{aligned}\)

f(1)=\boxed{\boxed{\dfrac52}}

No. 9

Fungsi f terdefinisi pada bilangan real kecuali 2 sehingga {f\left(\dfrac{2x}{x-5}\right)=2x-1}, x\neq5. Nilai dari {f(3) + f(1)} adalah ....
  1. -2
  2. 8
  1. 13
  2. 18

CARA 1

Misal \left(\dfrac{2x}{x-5}\right)=t
\(\begin{aligned} 2x&=tx-5t\\ 2x-tx&=-5t\\ tx-2x&=5t\\ (t-2)x&=5t\\ x&=\dfrac{5t}{t-2} \end{aligned}\)

\(\begin{aligned} f\left(\dfrac{2x}{x-5}\right)&=2x-1\\ f(t)&=2\left(\dfrac{5t}{t-2}\right)-1\\ &=\dfrac{10t}{t-2}-1\\ &=\dfrac{10t-(t-2)}{t-2}\\ &=\dfrac{10t-t+2}{t-2}\\ &=\dfrac{9t+2}{t-2} \end{aligned}\)

\(\begin{aligned} f(3)+f(1)&=\dfrac{9(3)+2}{3-2}+\dfrac{9(1)+2}{1-2}\\ &=\dfrac{29}1+\dfrac{11}{-1}\\ &=29-11\\ &=\boxed{\boxed{18}} \end{aligned}\)

CARA 2

\(\begin{aligned} \dfrac{2x}{x-5}&=3\\ 2x&=3x-15\\ -x&=-15\\ x&=15 \end{aligned}\)

\(\begin{aligned} f(3)&=2(15)-1\\ &=29 \end{aligned}\)

\(\begin{aligned} \dfrac{2x}{x-5}&=1\\ 2x&=x-5\\ x&=-5 \end{aligned}\)

\(\begin{aligned} f(1)&=2(-5)-1\\ &=-11 \end{aligned}\)

\(\begin{aligned} f(3)+f(1)&=29+(-11)\\ &=\boxed{\boxed{18}} \end{aligned}\)

No. 10

Diberikan fungsi f memenuhi persamaan {2f(-x)+f(x+3)=x+5} untuk setiap bilangan real x. Nilai 3f(1) adalah
  1. 5
  2. 4
  3. 3
  1. 2
  2. 0
Untuk x=-1,
\(\begin{aligned} 2f(-(-1))+f(-1+3)&=-1+5\\ 2f(1)+f(2)&=4\\ 4f(1)+2f(2)&=8 \end{aligned}\)

Untuk x=-2,
\(\begin{aligned} 2f(-(-2))+f(-2+3)&=-2+5\\ 2f(2)+f(1)&=3\\ f(1)+2f(2)&=3 \end{aligned}\)
\(\begin{aligned} 4f(1)+2f(2)&=8\\ f(1)+2f(2)&=3\qquad-\\\hline 3f(1)&=5 \end{aligned}\)

  • 1
  • 2

0 Response to "SBMPTN Zone : Fungsi"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel