SBMPTN Zone : Fungsi

Berikut ini adalah kumpulan soal mengenai Fungsi tingkat SBMPTN. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Terima kasih.
  • 1
  • 2

No. 1

Diberikan fungsi ff memenuhi persamaan 2f(x+2)+f(x)=x32f(x+2)+f(-x)=x-3 untuk setiap bilangan bulat xx. Nilai f(2)f(2) adalah ....
  1. 13\dfrac13
  2. 13-\dfrac13
  3. 3-3
  1. 33
  2. 2-2
Untuk x=0x=0,
2f(0+2)+f(0)=032f(2)+f(0)=34f(2)+2f(0)=6\begin{aligned}2f(0+2)+f(-0)&=0-3\\2f(2)+f(0)&=-3\\4f(2)+2f(0)&=-6\end{aligned}

Untuk x=2x=-2,
2f(2+2)+f((2))=232f(0)+f(2)=5f(2)+2f(0)=5\begin{aligned}2f(-2+2)+f(-(-2))&=-2-3\\2f(0)+f(2)&=-5\\f(2)+2f(0)&=-5\end{aligned}

4f(2)+2f(0)=6f(2)+2f(0)=53f(2)=1f(2)=13\begin{aligned}4f(2)+2f(0)&=-6\\f(2)+2f(0)&=-5\qquad-\\\hline3f(2)&=-1\\f(2)&=\boxed{\boxed{-\dfrac13}}\end{aligned}

No. 2

Diketahui f(x)=ax+b{f(x)=ax+b} dengan f1(11)=2{f^{-1}(11)=2} dan f1(8)=1{f^{-1}(8)=1} dengan f1f^{-1} menyatakan fungsi invers ff. Nilai limh0(3+h)f(3)3f(3+h)h=\displaystyle\lim_{h\to0}\dfrac{(3+h)f(3)-3f(3+h)}h= ....
  1. 44
  2. 55
  3. 66
  1. 77
  2. 88
f1(11)=2f(2)=112a+b=11\begin{aligned}f^{-1}(11)&=2\\f(2)&=11\\2a+b&=11\end{aligned}

f1(8)=1f(1)=8a+b=8\begin{aligned}f^{-1}(8)&=1\\f(1)&=8\\a+b&=8\end{aligned}

2a+b=11a+b=8a=3\begin{aligned}2a+b&=11\\a+b&=8\qquad-\\\hlinea&=3\end{aligned}

a+b=83+b=8b=5\begin{aligned}a+b&=8\\3+b&=8\\b&=5\end{aligned}

f(x)=3x+5f(x)=3x+5

lim h0(3+h)f(3)3f(3+h)h= lim h0(3+h)(3(3)+5)3(3(3+h)+5)h= lim h0(3+h)(9+5)3(9+3h+5)h= lim h0(3+h)(14)3(14+3h)h= lim h042+14h42+9hh= lim h05hh= lim h05=5\begin{aligned}\displaystyle\lim_{h\to0}\dfrac{(3+h)f(3)-3f(3+h)}h&=\displaystyle\lim_{h\to0}\dfrac{(3+h)(3(3)+5)-3(3(3+h)+5)}h\\&=\displaystyle\lim_{h\to0}\dfrac{(3+h)(9+5)-3(9+3h+5)}h\\&=\displaystyle\lim_{h\to0}\dfrac{(3+h)(14)-3(14+3h)}h\\&=\displaystyle\lim_{h\to0}\dfrac{42+14h-42+9h}h\\&=\displaystyle\lim_{h\to0}\dfrac{5h}h\\&=\displaystyle\lim_{h\to0}5\\&=\boxed{\boxed{5}}\end{aligned}

No. 3

f(x2+3ax+1)=2x1{f\left(x^2+3ax+1\right)=2x-1} dan f(5)=3{f(5)=3}. Hitung nilai aa
2x1=32x=4x=2\begin{aligned}2x-1&=3\\2x&=4\\x&=2\end{aligned}
x2+3ax+1=522+3a(2)+1=54+6a+1=56a+5=56a=0a=0\begin{aligned}x^2+3ax+1&=5\\2^2+3a(2)+1&=5\\4+6a+1&=5\\6a+5&=5\\6a&=0\\a&=\boxed{\boxed{0}}\end{aligned}

No. 4

Jika f(x)=3h(x)+4{f(x)=3h(x)+4}; g(x)=f(x)9{g(x)=\dfrac{\sqrt{f(x)}}9}; dan h(x)=3x2+2x1{h(x)=3x^2 + 2x-1}, maka nilai dari 2f(3)g(2)f2(3)g2(2){2f(3)\cdot g(2)-f^2(3)-g^2(2)} adalah ....
  1. 79744981-\dfrac{797449}{81}
  2. 79744981\dfrac{797449}{81}
  3. 8939-\dfrac{893}9
  1. 8937499\dfrac{893749}9
  2. 89374981\dfrac{893749}{81}
2f(3)g(2)f2(3)g2(2)=(f(3)g(2))2=(3h(3)+4f(2)9)2=(3(3(3)2+2(3)1)+43h(2)+49)2=(3(27+61)+43(3(2)2+2(2)1)+49)2=(3(32)+43(12+41)+49)2=(96+43(15)+49)2=(10045+49)2=(100499)2=(10079)2=(8939)2=79744981\begin{aligned}2f(3)\cdot g(2)-f^2(3)-g^2(2)&=-\left(f(3)-g(2)\right)^2\\&=-\left(3h(3)+4-\dfrac{\sqrt{f(2)}}9\right)^2\\&=-\left(3\left(3(3)^2+2(3)-1\right)+4-\dfrac{\sqrt{3h(2)+4}}9\right)^2\\&=-\left(3\left(27+6-1\right)+4-\dfrac{\sqrt{3\left(3(2)^2+2(2)-1\right)+4}}9\right)^2\\&=-\left(3\left(32\right)+4-\dfrac{\sqrt{3\left(12+4-1\right)+4}}9\right)^2\\&=-\left(96+4-\dfrac{\sqrt{3\left(15\right)+4}}9\right)^2\\&=-\left(100-\dfrac{\sqrt{45+4}}9\right)^2\\&=-\left(100-\dfrac{\sqrt{49}}9\right)^2\\&=-\left(100-\dfrac79\right)^2\\&=-\left(\dfrac{893}9\right)^2\\&=-\dfrac{797449}{81}\end{aligned}

No. 5

Jika f(x)=axf(x)=a^x, maka untuk setiap xx dan yy berlaku
  1. f(x)f(y)=f(xy){f(x)f(y)=f(xy)}
  2. f(x)f(y)=f(x+y){f(x)f(y)=f(x+y)}
  3. f(x)f(y)=f(x)+f(y){f(x)f(y)=f(x)+f(y)}
  1. f(x)+f(y)=f(xy){f(x)+f(y)=f(xy)}
  2. f(x)+f(y)=f(x+y){f(x)+f(y)=f(x+y)}
f(x)f(y)=axay=ax+y=f(x+y)

No. 6

Bila f(x)f(x) memenuhi 2f(x)+f(1x)=x2{2f(x)+f(1-x)=x^2} untuk semua nilai real xx, maka f(x)f(x) sama dengan
  1. 12x232x+12{\dfrac12x^2-\dfrac32x+\dfrac12}
  2. 19x2+89x13{\dfrac19x^2+\dfrac89x-\dfrac13}
  3. 23x2+12x13{\dfrac23x^2+\dfrac12x-\dfrac13}
  1. 13x2+23x13{\dfrac13x^2+\dfrac23x-\dfrac13}
  2. 19x2+x49{\dfrac19x^2+x-\dfrac49}
2f(1x)+f(1(1x))=(1x)22f(1x)+f(11+x)=12x+x22f(1x)+f(x)=x22x+1f(x)+2f(1x)=x22x+1\begin{aligned}2f(1-x)+f(1-(1-x))&=(1-x)^2\\2f(1-x)+f(1-1+x)&=1-2x+x^2\\2f(1-x)+f(x)&=x^2-2x+1\\f(x)+2f(1-x)&=x^2-2x+1\end{aligned}

2f(x)+f(1x)=x2×2f(x)+2f(1x)=x22x+1\begin{aligned}2f(x)+f(1-x)&=x^2&\color{red}{\times 2}\\f(x)+2f(1-x)&=x^2-2x+1&\end{aligned}

4f(x)+2f(1x)=2x2f(x)+2f(1x)=x22x+13f(x)=x2+2x1f(x)=13x2+23x13\begin{aligned}4f(x)+2f(1-x)&=2x^2\\f(x)+2f(1-x)&=x^2-2x+1&\color{red}{-}\\\hline3f(x)&=x^2+2x-1\\f(x)&=\dfrac13x^2+\dfrac23x-\dfrac13\end{aligned}

No. 7

Jika (fg)(x)=6x+32x5{(f\circ g)(x)=\dfrac{6x+3}{2x-5}} dan g(x)=4x11{g(x)=4x-11}, maka hasil dari 58f1(x1)g(3) dx{\displaystyle\intop_5^8\dfrac{f^{-1}(x-1)}{g(3)}\ dx} adalah
  1. 72ln23{72\ln2-3}
  2. 36ln32{36\ln 3-2}
  3. 36ln26{36\ln 2-6}
  1. 36ln23{36\ln 2 - 3}
  2. 72ln32{72\ln 3-2}
(fg)(x)=6x+32x5f(g(x))=12x+64x10f(4x11)=3(4x11)+394x11+1f(x)=3x+39x+1f1(x)=x+39x3f1(x1)=(x1)+39x13=x+1+39x4=x+40x4\begin{aligned}(f\circ g)(x)&=\dfrac{6x+3}{2x-5}\\[10pt]f(g(x))&=\dfrac{12x+6}{4x-10}\\[10pt]f(4x-11)&=\dfrac{3(4x-11)+39}{4x-11+1}\\[10pt]f(x)&=\dfrac{3x+39}{x+1}\\[10pt]f^{-1}(x)&=\dfrac{-x+39}{x-3}\\[10pt]f^{-1}(x-1)&=\dfrac{-(x-1)+39}{x-1-3}\\[10pt]&=\dfrac{-x+1+39}{x-4}\\[10pt]&=\dfrac{-x+40}{x-4}\end{aligned}

58f1(x1)g(3) dx=58x+40x44(3)11 dx=58x+4+36x41211 dx=581+36x41 dx=58(1+36x4) dx=[x+36lnx4]58=[8+36ln84][5+36ln54]=[8+36ln4][5+36ln1]=[8+36ln22][542(0)]=[8+72ln2][5]=8+72ln2+5=72ln23\begin{aligned}\displaystyle\intop_5^8\dfrac{f^{-1}(x-1)}{g(3)}\ dx&=\displaystyle\intop_5^8\dfrac{\dfrac{-x+40}{x-4}}{4(3)-11}\ dx\\&=\displaystyle\intop_5^8\dfrac{\dfrac{-x+4+36}{x-4}}{12-11}\ dx\\&=\displaystyle\intop_5^8\dfrac{-1+\dfrac{36}{x-4}}1\ dx\\&=\displaystyle\intop_5^8\left(-1+\dfrac{36}{x-4}\right)\ dx\\&=\left[-x+36\ln|x-4|\right]_5^8\\&=\left[-8+36\ln|8-4|\right]-\left[-5+36\ln|5-4|\right]\\&=\left[-8+36\ln4\right]-\left[-5+36\ln1\right]\\&=\left[-8+36\ln2^2\right]-\left[-5-42(0)\right]\\&=\left[-8+72\ln2\right]-\left[-5\right]\\&=-8+72\ln2+5\\&=\boxed{\boxed{72\ln2-3}}\end{aligned}

No. 8

Jika f(22x1)=x{f\left(\dfrac2{\sqrt{2x-1}}\right)=x} dengan x12x\geq\dfrac12, maka f(1)=f(1)=
  1. 44
  2. 22
  3. 12\dfrac12
  1. 52\dfrac52
  2. 32\dfrac32
22x1=12x1=22x1=42x=5x=52\begin{aligned}\dfrac2{\sqrt{2x-1}}&=1\\\sqrt{2x-1}&=2\\2x-1&=4\\2x&=5\\x&=\dfrac52\end{aligned}

f(1)=52f(1)=\boxed{\boxed{\dfrac52}}

No. 9

Fungsi ff terdefinisi pada bilangan real kecuali 22 sehingga f(2xx5)=2x1{f\left(\dfrac{2x}{x-5}\right)=2x-1}, x5x\neq5. Nilai dari f(3)+f(1){f(3) + f(1)} adalah ....
  1. 2-2
  2. 88
  1. 1313
  2. 1818

CARA 1

Misal (2xx5)=t\left(\dfrac{2x}{x-5}\right)=t
2x=tx5t2xtx=5ttx2x=5t(t2)x=5tx=5tt2\begin{aligned}2x&=tx-5t\\2x-tx&=-5t\\tx-2x&=5t\\(t-2)x&=5t\\x&=\dfrac{5t}{t-2}\end{aligned}

f(2xx5)=2x1f(t)=2(5tt2)1=10tt21=10t(t2)t2=10tt+2t2=9t+2t2\begin{aligned}f\left(\dfrac{2x}{x-5}\right)&=2x-1\\f(t)&=2\left(\dfrac{5t}{t-2}\right)-1\\&=\dfrac{10t}{t-2}-1\\&=\dfrac{10t-(t-2)}{t-2}\\&=\dfrac{10t-t+2}{t-2}\\&=\dfrac{9t+2}{t-2}\end{aligned}

f(3)+f(1)=9(3)+232+9(1)+212=291+111=2911=18\begin{aligned}f(3)+f(1)&=\dfrac{9(3)+2}{3-2}+\dfrac{9(1)+2}{1-2}\\&=\dfrac{29}1+\dfrac{11}{-1}\\&=29-11\\&=\boxed{\boxed{18}}\end{aligned}

CARA 2

2xx5=32x=3x15x=15x=15\begin{aligned}\dfrac{2x}{x-5}&=3\\2x&=3x-15\\-x&=-15\\x&=15\end{aligned}

f(3)=2(15)1=29\begin{aligned}f(3)&=2(15)-1\\&=29\end{aligned}

2xx5=12x=x5x=5\begin{aligned}\dfrac{2x}{x-5}&=1\\2x&=x-5\\x&=-5\end{aligned}

f(1)=2(5)1=11\begin{aligned}f(1)&=2(-5)-1\\&=-11\end{aligned}

f(3)+f(1)=29+(11)=18\begin{aligned}f(3)+f(1)&=29+(-11)\\&=\boxed{\boxed{18}}\end{aligned}

No. 10

Diberikan fungsi ff memenuhi persamaan 2f(x)+f(x+3)=x+5{2f(-x)+f(x+3)=x+5} untuk setiap bilangan real xx. Nilai 3f(1)3f(1) adalah
  1. 55
  2. 44
  3. 33
  1. 22
  2. 00
Untuk x=1x=-1,
2f((1))+f(1+3)=1+52f(1)+f(2)=44f(1)+2f(2)=8\begin{aligned}2f(-(-1))+f(-1+3)&=-1+5\\2f(1)+f(2)&=4\\4f(1)+2f(2)&=8\end{aligned}

Untuk x=2x=-2,
2f((2))+f(2+3)=2+52f(2)+f(1)=3f(1)+2f(2)=3\begin{aligned}2f(-(-2))+f(-2+3)&=-2+5\\2f(2)+f(1)&=3\\f(1)+2f(2)&=3\end{aligned}
4f(1)+2f(2)=8f(1)+2f(2)=33f(1)=5\begin{aligned}4f(1)+2f(2)&=8\\f(1)+2f(2)&=3\qquad-\\\hline3f(1)&=5\end{aligned}

  • 1
  • 2

Related Posts

0 Response to "SBMPTN Zone : Fungsi"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel