Exercise Zone : Limit [2]

Berikut ini adalah kumpulan soal dan pembahasan mengenai limit tingkat dasar. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Terima kasih.


No. 11

Nilai limx02xx+2=\displaystyle\lim_{x\to0}\dfrac{2x}{x+2}= ...
  1. 00
  2. 11
  3. 33
  1. 99
  2. \infty
limx02xx+2=2(0)0+2=02=0\begin{aligned} \displaystyle\lim_{x\to0}\dfrac{2x}{x+2}&=\dfrac{2(0)}{0+2}\\[8pt] &=\dfrac02\\ &=\boxed{\boxed{0}} \end{aligned}

No. 12

Jika f(x)=32x+9xf(x)=\dfrac{3-\sqrt{2x+9}}x, maka limx0f(x)=\displaystyle\lim_{x\to0}f(x)=
  1. 13-\dfrac13
  2. 66
  3. 23\dfrac23
  1. 1212
  2. 12\dfrac12

CARA 1 : KALI SEKAWAN

limx0f(x)=limx032x+9x3+2x+93+2x+9=limx09(2x+9)x(3+2x+9)=limx092x9x(3+2x+9)=limx02xx(3+2x+9)=limx023+2x+9=23+2(0)+9=23+0+9=23+9=23+3=26=13\begin{aligned} \displaystyle\lim_{x\to0}f(x)&=\displaystyle\lim_{x\to0}\dfrac{3-\sqrt{2x+9}}x\cdot\dfrac{3+\sqrt{2x+9}}{3+\sqrt{2x+9}}\\[8pt] &=\displaystyle\lim_{x\to0}\dfrac{9-(2x+9)}{x(3+\sqrt{2x+9})}\\[8pt] &=\displaystyle\lim_{x\to0}\dfrac{9-2x-9}{x(3+\sqrt{2x+9})}\\[8pt] &=\displaystyle\lim_{x\to0}\dfrac{-2x}{x(3+\sqrt{2x+9})}\\[8pt] &=\displaystyle\lim_{x\to0}\dfrac{-2}{3+\sqrt{2x+9}}\\[8pt] &=\dfrac{-2}{3+\sqrt{2(0)+9}}\\[8pt] &=\dfrac{-2}{3+\sqrt{0+9}}\\[8pt] &=\dfrac{-2}{3+\sqrt9}\\[8pt] &=\dfrac{-2}{3+3}\\[8pt] &=\dfrac{-2}6\\ &=\boxed{\boxed{-\dfrac13}} \end{aligned}

CARA 2 : L'HOPITAL

limx0f(x)=limx032x+9x=limx00222x+91=limx012x+9=12(0)+9=10+9=19=13\begin{aligned} \displaystyle\lim_{x\to0}f(x)&=\displaystyle\lim_{x\to0}\dfrac{3-\sqrt{2x+9}}x\\[8pt] &=\displaystyle\lim_{x\to0}\dfrac{0-\dfrac2{2\sqrt{2x+9}}}1\\[8pt] &=\displaystyle\lim_{x\to0}-\dfrac1{\sqrt{2x+9}}\\[8pt] &=-\dfrac1{\sqrt{2(0)+9}}\\[8pt] &=-\dfrac1{\sqrt{0+9}}\\[8pt] &=-\dfrac1{\sqrt9}\\ &=\boxed{\boxed{-\dfrac13}} \end{aligned}

No. 13

Nilai dari limx12x22x1x\displaystyle\lim_{x\to1}\dfrac{2x-2}{\sqrt{2x-1}-\sqrt{x}} adalah
  1. 11
  2. 22
  3. 33
  1. 44
  2. 55

CARA 1

limx12x22x1x=limx12x22x1x2x1+x2x1+x=limx1(2x2)(2x1+x)2x1x=limx12(x1)(2x1+x)x1=limx12(2x1+x)=2(2(1)1+1)=2(21+1)=2(1+1)=2(1+1)=2(2)=4\begin{aligned} \displaystyle\lim_{x\to1}\dfrac{2x-2}{\sqrt{2x-1}-\sqrt{x}}&=\displaystyle\lim_{x\to1}\dfrac{2x-2}{\sqrt{2x-1}-\sqrt{x}}\color{red}{\cdot\dfrac{\sqrt{2x-1}+\sqrt{x}}{\sqrt{2x-1}+\sqrt{x}}}\\[8pt] &=\displaystyle\lim_{x\to1}\dfrac{(2x-2)\left(\sqrt{2x-1}+\sqrt{x}\right)}{2x-1-x}\\[8pt] &=\displaystyle\lim_{x\to1}\dfrac{2\cancel{(x-1)}\left(\sqrt{2x-1}+\sqrt{x}\right)}{\cancel{x-1}}\\[8pt] &=\displaystyle\lim_{x\to1}2\left(\sqrt{2x-1}+\sqrt{x}\right)\\ &=2\left(\sqrt{2(1)-1}+\sqrt{1}\right)\\ &=2\left(\sqrt{2-1}+1\right)\\ &=2\left(\sqrt1+1\right)\\ &=2\left(1+1\right)\\ &=2\left(2\right)\\ &=\boxed{\boxed{4}} \end{aligned}

CARA 2

limx12x22x1x=limx12222x112x=2222(1)1121=2222112(1)=222112=222(1)12=22212=212=4\begin{aligned} \displaystyle\lim_{x\to1}\dfrac{2x-2}{\sqrt{2x-1}-\sqrt{x}}&=\displaystyle\lim_{x\to1}\dfrac2{\dfrac2{2\sqrt{2x-1}}-\dfrac1{2\sqrt{x}}}\\[21pt] &=\dfrac2{\dfrac2{2\sqrt{2(1)-1}}-\dfrac1{2\sqrt1}}\\[21pt] &=\dfrac2{\dfrac2{2\sqrt{2-1}}-\dfrac1{2(1)}}\\[21pt] &=\dfrac2{\dfrac2{2\sqrt1}-\dfrac12}\\[21pt] &=\dfrac2{\dfrac2{2(1)}-\dfrac12}\\[21pt] &=\dfrac2{\dfrac22-\dfrac12}\\[21pt] &=\dfrac2{\dfrac12}\\ &=\boxed{\boxed{4}} \end{aligned}

No. 14

Diektahui f(x)=1+x{f(x)=\sqrt{1+x}}. Nilai limh0f(3+2h2)f(32h2)h2\displaystyle\lim_{h\to0}\dfrac{f\left(3+2h^2\right)-f\left(3-2h^2\right)}{h^2} adalah
  1. 00
  2. 67\dfrac67
  3. 98\dfrac98
  1. 23\dfrac23
  2. 54\dfrac54

CARA 1

limh0f(3+2h2)f(32h2)h2=limh01+3+2h21+32h2h2=limh04+2h242h2h24+2h2+42h24+2h2+42h2=limh0(4+2h2)(42h2)h2(4+2h2+42h2)=limh04+2h24+2h2h2(4+2h2+42h2)=limh04h2h2(4+2h2+42h2)=limh044+2h2+42h2=44+2(0)2+42(0)2=44+0+40=44+4=42+2=44=1\begin{aligned} \displaystyle\lim_{h\to0}\dfrac{f\left(3+2h^2\right)-f\left(3-2h^2\right)}{h^2}&=\displaystyle\lim_{h\to0}\dfrac{\sqrt{1+3+2h^2}-\sqrt{1+3-2h^2}}{h^2}\\[8pt] &=\displaystyle\lim_{h\to0}\dfrac{\sqrt{4+2h^2}-\sqrt{4-2h^2}}{h^2}\color{red}{\cdot\dfrac{\sqrt{4+2h^2}+\sqrt{4-2h^2}}{\sqrt{4+2h^2}+\sqrt{4-2h^2}}}\\[8pt] &=\displaystyle\lim_{h\to0}\dfrac{\left(4+2h^2\right)-\left(4-2h^2\right)}{h^2\left(\sqrt{4+2h^2}+\sqrt{4-2h^2}\right)}\\[8pt] &=\displaystyle\lim_{h\to0}\dfrac{4+2h^2-4+2h^2}{h^2\left(\sqrt{4+2h^2}+\sqrt{4-2h^2}\right)}\\[8pt] &=\displaystyle\lim_{h\to0}\dfrac{4h^2}{h^2\left(\sqrt{4+2h^2}+\sqrt{4-2h^2}\right)}\\[8pt] &=\displaystyle\lim_{h\to0}\dfrac4{\sqrt{4+2h^2}+\sqrt{4-2h^2}}\\[8pt] &=\dfrac4{\sqrt{4+2(0)^2}+\sqrt{4-2(0)^2}}\\[8pt] &=\dfrac4{\sqrt{4+0}+\sqrt{4-0}}\\[8pt] &=\dfrac4{\sqrt4+\sqrt4}\\[8pt] &=\dfrac4{2+2}\\[8pt] &=\dfrac44\\ &=\boxed{\boxed{1}} \end{aligned}

CARA 2 : L'HOPITAL

f(x)=1+xf(x)=121+x\begin{aligned} f(x)&=\sqrt{1+x}\\ f'(x)&=\dfrac1{2\sqrt{1+x}} \end{aligned}

limh0f(3+2h2)f(32h2)h2=limh04h f(3+2h2)(4h)f(32h2)2h=limh0(2f(3+2h2)+2f(32h2))=2f(3+2(0)2)+2f(32(0)2)=2f(3)+2f(3)=4f(3)=4(121+3)=424=42(2)=44=1\begin{aligned} \displaystyle\lim_{h\to0}\dfrac{f\left(3+2h^2\right)-f\left(3-2h^2\right)}{h^2}&=\displaystyle\lim_{h\to0}\dfrac{4h\ f'\left(3+2h^2\right)-(-4h)f'\left(3-2h^2\right)}{2h}\\[8pt] &=\displaystyle\lim_{h\to0}\left(2f'\left(3+2h^2\right)+2f'\left(3-2h^2\right)\right)\\ &=2f'\left(3+2(0)^2\right)+2f'\left(3-2(0)^2\right)\\ &=2f'(3)+2f'(3)\\ &=4f'(3)\\ &=4\left(\dfrac1{2\sqrt{1+3}}\right)\\[8pt] &=\dfrac4{2\sqrt4}\\[8pt] &=\dfrac4{2(2)}\\[8pt] &=\dfrac44\\ &=\boxed{\boxed{1}} \end{aligned}

No. 15

Nilai dari limx3x2+3x18x23x\displaystyle\lim_{x\to3}\dfrac{x^2+3x-18}{x^2-3x} adalah
  1. 33
  2. 3-3
  3. 2-2
  1. 22
  2. 00
limx3x2+3x18x23x=limx3(x+6)(x3)x(x3)=limx3x+6x=3+63=93=3\begin{aligned} \displaystyle\lim_{x\to3}\dfrac{x^2+3x-18}{x^2-3x}&=\displaystyle\lim_{x\to3}\dfrac{(x+6)\cancel{(x-3)}}{x\cancel{(x-3)}}\\[8pt] &=\displaystyle\lim_{x\to3}\dfrac{x+6}x\\[8pt] &=\dfrac{3+6}3\\[8pt] &=\dfrac93\\ &=\boxed{\boxed{3}} \end{aligned}

No. 16

Diketahui limxax2x4=14{\displaystyle\lim_{x\to a}\dfrac{\sqrt{x}-2}{x-4}=\dfrac14}, nilai aa adalah
  1. 00
  2. 4-4
  3. 44
  1. 2-2
  2. 22
limxax2x4=14limxax2x4x+2x+2=14limxax4(x4)(x+2)=14limxa1x+2=141a+2=14a+2=4a=2a=4\begin{aligned} \displaystyle\lim_{x\to a}\dfrac{\sqrt{x}-2}{x-4}&=\dfrac14\\[8pt] \displaystyle\lim_{x\to a}\dfrac{\sqrt{x}-2}{x-4}\color{red}{\cdot\dfrac{\sqrt{x}+2}{\sqrt{x}+2}}&=\dfrac14\\[8pt] \displaystyle\lim_{x\to a}\dfrac{\cancel{x-4}}{\cancel{(x-4)}\left(\sqrt{x}+2\right)}&=\dfrac14\\[8pt] \displaystyle\lim_{x\to a}\dfrac1{\sqrt{x}+2}&=\dfrac14\\[8pt] \dfrac1{\sqrt{a}+2}&=\dfrac14\\[8pt] \sqrt{a}+2&=4\\ \sqrt{a}&=2\\ a&=4 \end{aligned}

No. 17

Jika limθ1f(θ)\displaystyle\lim_{\theta\to-1}f(\theta) ada dan θ2+θ2θ+3f(θ)θ+3θ2+2θ1θ+3{\dfrac{\theta^2+\theta-2}{\theta+3}\leq\dfrac{f(\theta)}{\theta+3}\leq\dfrac{\theta^2+2\theta-1}{\theta+3}}, tentukan limθ1f(θ)\displaystyle\lim_{\theta\to-1}f(\theta)!
θ2+θ2θ+3f(θ)θ+3θ2+2θ1θ+3limθ1θ2+θ2θ+3limθ1f(θ)θ+3limθ1θ2+2θ1θ+3(1)2+(1)21+3limθ1f(θ)1+3(1)2+2(1)11+322limθ1f(θ)222×22limθ1f(θ)2\begin{array}{rcccll} \dfrac{\theta^2+\theta-2}{\theta+3}&\leq&\dfrac{f(\theta)}{\theta+3}&\leq&\dfrac{\theta^2+2\theta-1}{\theta+3}\\[8pt] \displaystyle\lim_{\theta\to-1}\dfrac{\theta^2+\theta-2}{\theta+3}&\leq&\displaystyle\lim_{\theta\to-1}\dfrac{f(\theta)}{\theta+3}&\leq&\displaystyle\lim_{\theta\to-1}\dfrac{\theta^2+2\theta-1}{\theta+3}\\[8pt] \dfrac{(-1)^2+(-1)-2}{-1+3}&\leq&\dfrac{\displaystyle\lim_{\theta\to-1}f(\theta)}{-1+3}&\leq&\dfrac{(-1)^2+2(-1)-1}{-1+3}\\[8pt] \dfrac{-2}2&\leq&\dfrac{\displaystyle\lim_{\theta\to-1}f(\theta)}2&\leq&\dfrac{-2}{2}&\quad\color{red}{\times2}\\[8pt] -2&\leq&\displaystyle\lim_{\theta\to-1}f(\theta)&\leq&-2 \end{array}
limθ1f(θ)=2\displaystyle\lim_{\theta\to-1}f(\theta)=-2

No. 18

Jika limx2x23x+ax2=1{\displaystyle\lim_{x\to2}\dfrac{x^2-3x+a}{x-2}=1} maka nilai aa adalah ....
  1. 2-2
  2. 1-1
  3. 00
  1. 11
  2. 22
Jika f(x)=x23x+a{f(x)=x^2-3x+a}, maka f(2)=0{f(2)=0}.
223(2)+a=046+a=02+a=0a=2\begin{aligned} 2^2-3(2)+a&=0\\ 4-6+a&=0\\ -2+a&=0\\ a&=\boxed{\boxed{2}} \end{aligned}

Related Posts

0 Response to "Exercise Zone : Limit [2]"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel