Berikut ini adalah kumpulan soal dan pembahasan mengenai limit tingkat dasar. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Terima kasih.
No. 11 Nilai
lim x → 0 2 x x + 2 = \displaystyle\lim_{x\to0}\dfrac{2x}{x+2}= x → 0 lim x + 2 2 x = ...
lim x → 0 2 x x + 2 = 2 ( 0 ) 0 + 2 = 0 2 = 0 \begin{aligned}
\displaystyle\lim_{x\to0}\dfrac{2x}{x+2}&=\dfrac{2(0)}{0+2}\\[8pt]
&=\dfrac02\\
&=\boxed{\boxed{0}}
\end{aligned} x → 0 lim x + 2 2 x = 0 + 2 2 ( 0 ) = 2 0 = 0 No. 12 Jika
f ( x ) = 3 − 2 x + 9 x f(x)=\dfrac{3-\sqrt{2x+9}}x f ( x ) = x 3 − 2 x + 9 , maka
lim x → 0 f ( x ) = \displaystyle\lim_{x\to0}f(x)= x → 0 lim f ( x ) =
− 1 3 -\dfrac13 − 3 1
6 6 6
2 3 \dfrac23 3 2
CARA 1 : KALI SEKAWAN lim x → 0 f ( x ) = lim x → 0 3 − 2 x + 9 x ⋅ 3 + 2 x + 9 3 + 2 x + 9 = lim x → 0 9 − ( 2 x + 9 ) x ( 3 + 2 x + 9 ) = lim x → 0 9 − 2 x − 9 x ( 3 + 2 x + 9 ) = lim x → 0 − 2 x x ( 3 + 2 x + 9 ) = lim x → 0 − 2 3 + 2 x + 9 = − 2 3 + 2 ( 0 ) + 9 = − 2 3 + 0 + 9 = − 2 3 + 9 = − 2 3 + 3 = − 2 6 = − 1 3 \begin{aligned}
\displaystyle\lim_{x\to0}f(x)&=\displaystyle\lim_{x\to0}\dfrac{3-\sqrt{2x+9}}x\cdot\dfrac{3+\sqrt{2x+9}}{3+\sqrt{2x+9}}\\[8pt]
&=\displaystyle\lim_{x\to0}\dfrac{9-(2x+9)}{x(3+\sqrt{2x+9})}\\[8pt]
&=\displaystyle\lim_{x\to0}\dfrac{9-2x-9}{x(3+\sqrt{2x+9})}\\[8pt]
&=\displaystyle\lim_{x\to0}\dfrac{-2x}{x(3+\sqrt{2x+9})}\\[8pt]
&=\displaystyle\lim_{x\to0}\dfrac{-2}{3+\sqrt{2x+9}}\\[8pt]
&=\dfrac{-2}{3+\sqrt{2(0)+9}}\\[8pt]
&=\dfrac{-2}{3+\sqrt{0+9}}\\[8pt]
&=\dfrac{-2}{3+\sqrt9}\\[8pt]
&=\dfrac{-2}{3+3}\\[8pt]
&=\dfrac{-2}6\\
&=\boxed{\boxed{-\dfrac13}}
\end{aligned} x → 0 lim f ( x ) = x → 0 lim x 3 − 2 x + 9 ⋅ 3 + 2 x + 9 3 + 2 x + 9 = x → 0 lim x ( 3 + 2 x + 9 ) 9 − ( 2 x + 9 ) = x → 0 lim x ( 3 + 2 x + 9 ) 9 − 2 x − 9 = x → 0 lim x ( 3 + 2 x + 9 ) − 2 x = x → 0 lim 3 + 2 x + 9 − 2 = 3 + 2 ( 0 ) + 9 − 2 = 3 + 0 + 9 − 2 = 3 + 9 − 2 = 3 + 3 − 2 = 6 − 2 = − 3 1
CARA 2 : L'HOPITAL lim x → 0 f ( x ) = lim x → 0 3 − 2 x + 9 x = lim x → 0 0 − 2 2 2 x + 9 1 = lim x → 0 − 1 2 x + 9 = − 1 2 ( 0 ) + 9 = − 1 0 + 9 = − 1 9 = − 1 3 \begin{aligned}
\displaystyle\lim_{x\to0}f(x)&=\displaystyle\lim_{x\to0}\dfrac{3-\sqrt{2x+9}}x\\[8pt]
&=\displaystyle\lim_{x\to0}\dfrac{0-\dfrac2{2\sqrt{2x+9}}}1\\[8pt]
&=\displaystyle\lim_{x\to0}-\dfrac1{\sqrt{2x+9}}\\[8pt]
&=-\dfrac1{\sqrt{2(0)+9}}\\[8pt]
&=-\dfrac1{\sqrt{0+9}}\\[8pt]
&=-\dfrac1{\sqrt9}\\
&=\boxed{\boxed{-\dfrac13}}
\end{aligned} x → 0 lim f ( x ) = x → 0 lim x 3 − 2 x + 9 = x → 0 lim 1 0 − 2 2 x + 9 2 = x → 0 lim − 2 x + 9 1 = − 2 ( 0 ) + 9 1 = − 0 + 9 1 = − 9 1 = − 3 1 No. 13 Nilai dari
lim x → 1 2 x − 2 2 x − 1 − x \displaystyle\lim_{x\to1}\dfrac{2x-2}{\sqrt{2x-1}-\sqrt{x}} x → 1 lim 2 x − 1 − x 2 x − 2 adalah
CARA 1 lim x → 1 2 x − 2 2 x − 1 − x = lim x → 1 2 x − 2 2 x − 1 − x ⋅ 2 x − 1 + x 2 x − 1 + x = lim x → 1 ( 2 x − 2 ) ( 2 x − 1 + x ) 2 x − 1 − x = lim x → 1 2 ( x − 1 ) ( 2 x − 1 + x ) x − 1 = lim x → 1 2 ( 2 x − 1 + x ) = 2 ( 2 ( 1 ) − 1 + 1 ) = 2 ( 2 − 1 + 1 ) = 2 ( 1 + 1 ) = 2 ( 1 + 1 ) = 2 ( 2 ) = 4 \begin{aligned}
\displaystyle\lim_{x\to1}\dfrac{2x-2}{\sqrt{2x-1}-\sqrt{x}}&=\displaystyle\lim_{x\to1}\dfrac{2x-2}{\sqrt{2x-1}-\sqrt{x}}\color{red}{\cdot\dfrac{\sqrt{2x-1}+\sqrt{x}}{\sqrt{2x-1}+\sqrt{x}}}\\[8pt]
&=\displaystyle\lim_{x\to1}\dfrac{(2x-2)\left(\sqrt{2x-1}+\sqrt{x}\right)}{2x-1-x}\\[8pt]
&=\displaystyle\lim_{x\to1}\dfrac{2\cancel{(x-1)}\left(\sqrt{2x-1}+\sqrt{x}\right)}{\cancel{x-1}}\\[8pt]
&=\displaystyle\lim_{x\to1}2\left(\sqrt{2x-1}+\sqrt{x}\right)\\
&=2\left(\sqrt{2(1)-1}+\sqrt{1}\right)\\
&=2\left(\sqrt{2-1}+1\right)\\
&=2\left(\sqrt1+1\right)\\
&=2\left(1+1\right)\\
&=2\left(2\right)\\
&=\boxed{\boxed{4}}
\end{aligned} x → 1 lim 2 x − 1 − x 2 x − 2 = x → 1 lim 2 x − 1 − x 2 x − 2 ⋅ 2 x − 1 + x 2 x − 1 + x = x → 1 lim 2 x − 1 − x ( 2 x − 2 ) ( 2 x − 1 + x ) = x → 1 lim x − 1 2 ( x − 1 ) ( 2 x − 1 + x ) = x → 1 lim 2 ( 2 x − 1 + x ) = 2 ( 2 ( 1 ) − 1 + 1 ) = 2 ( 2 − 1 + 1 ) = 2 ( 1 + 1 ) = 2 ( 1 + 1 ) = 2 ( 2 ) = 4
CARA 2 lim x → 1 2 x − 2 2 x − 1 − x = lim x → 1 2 2 2 2 x − 1 − 1 2 x = 2 2 2 2 ( 1 ) − 1 − 1 2 1 = 2 2 2 2 − 1 − 1 2 ( 1 ) = 2 2 2 1 − 1 2 = 2 2 2 ( 1 ) − 1 2 = 2 2 2 − 1 2 = 2 1 2 = 4 \begin{aligned}
\displaystyle\lim_{x\to1}\dfrac{2x-2}{\sqrt{2x-1}-\sqrt{x}}&=\displaystyle\lim_{x\to1}\dfrac2{\dfrac2{2\sqrt{2x-1}}-\dfrac1{2\sqrt{x}}}\\[21pt]
&=\dfrac2{\dfrac2{2\sqrt{2(1)-1}}-\dfrac1{2\sqrt1}}\\[21pt]
&=\dfrac2{\dfrac2{2\sqrt{2-1}}-\dfrac1{2(1)}}\\[21pt]
&=\dfrac2{\dfrac2{2\sqrt1}-\dfrac12}\\[21pt]
&=\dfrac2{\dfrac2{2(1)}-\dfrac12}\\[21pt]
&=\dfrac2{\dfrac22-\dfrac12}\\[21pt]
&=\dfrac2{\dfrac12}\\
&=\boxed{\boxed{4}}
\end{aligned} x → 1 lim 2 x − 1 − x 2 x − 2 = x → 1 lim 2 2 x − 1 2 − 2 x 1 2 = 2 2 ( 1 ) − 1 2 − 2 1 1 2 = 2 2 − 1 2 − 2 ( 1 ) 1 2 = 2 1 2 − 2 1 2 = 2 ( 1 ) 2 − 2 1 2 = 2 2 − 2 1 2 = 2 1 2 = 4 No. 14 Diektahui
f ( x ) = 1 + x {f(x)=\sqrt{1+x}} f ( x ) = 1 + x . Nilai
lim h → 0 f ( 3 + 2 h 2 ) − f ( 3 − 2 h 2 ) h 2 \displaystyle\lim_{h\to0}\dfrac{f\left(3+2h^2\right)-f\left(3-2h^2\right)}{h^2} h → 0 lim h 2 f ( 3 + 2 h 2 ) − f ( 3 − 2 h 2 ) adalah
0 0 0
6 7 \dfrac67 7 6
9 8 \dfrac98 8 9
2 3 \dfrac23 3 2
5 4 \dfrac54 4 5
CARA 1 lim h → 0 f ( 3 + 2 h 2 ) − f ( 3 − 2 h 2 ) h 2 = lim h → 0 1 + 3 + 2 h 2 − 1 + 3 − 2 h 2 h 2 = lim h → 0 4 + 2 h 2 − 4 − 2 h 2 h 2 ⋅ 4 + 2 h 2 + 4 − 2 h 2 4 + 2 h 2 + 4 − 2 h 2 = lim h → 0 ( 4 + 2 h 2 ) − ( 4 − 2 h 2 ) h 2 ( 4 + 2 h 2 + 4 − 2 h 2 ) = lim h → 0 4 + 2 h 2 − 4 + 2 h 2 h 2 ( 4 + 2 h 2 + 4 − 2 h 2 ) = lim h → 0 4 h 2 h 2 ( 4 + 2 h 2 + 4 − 2 h 2 ) = lim h → 0 4 4 + 2 h 2 + 4 − 2 h 2 = 4 4 + 2 ( 0 ) 2 + 4 − 2 ( 0 ) 2 = 4 4 + 0 + 4 − 0 = 4 4 + 4 = 4 2 + 2 = 4 4 = 1 \begin{aligned}
\displaystyle\lim_{h\to0}\dfrac{f\left(3+2h^2\right)-f\left(3-2h^2\right)}{h^2}&=\displaystyle\lim_{h\to0}\dfrac{\sqrt{1+3+2h^2}-\sqrt{1+3-2h^2}}{h^2}\\[8pt]
&=\displaystyle\lim_{h\to0}\dfrac{\sqrt{4+2h^2}-\sqrt{4-2h^2}}{h^2}\color{red}{\cdot\dfrac{\sqrt{4+2h^2}+\sqrt{4-2h^2}}{\sqrt{4+2h^2}+\sqrt{4-2h^2}}}\\[8pt]
&=\displaystyle\lim_{h\to0}\dfrac{\left(4+2h^2\right)-\left(4-2h^2\right)}{h^2\left(\sqrt{4+2h^2}+\sqrt{4-2h^2}\right)}\\[8pt]
&=\displaystyle\lim_{h\to0}\dfrac{4+2h^2-4+2h^2}{h^2\left(\sqrt{4+2h^2}+\sqrt{4-2h^2}\right)}\\[8pt]
&=\displaystyle\lim_{h\to0}\dfrac{4h^2}{h^2\left(\sqrt{4+2h^2}+\sqrt{4-2h^2}\right)}\\[8pt]
&=\displaystyle\lim_{h\to0}\dfrac4{\sqrt{4+2h^2}+\sqrt{4-2h^2}}\\[8pt]
&=\dfrac4{\sqrt{4+2(0)^2}+\sqrt{4-2(0)^2}}\\[8pt]
&=\dfrac4{\sqrt{4+0}+\sqrt{4-0}}\\[8pt]
&=\dfrac4{\sqrt4+\sqrt4}\\[8pt]
&=\dfrac4{2+2}\\[8pt]
&=\dfrac44\\
&=\boxed{\boxed{1}}
\end{aligned} h → 0 lim h 2 f ( 3 + 2 h 2 ) − f ( 3 − 2 h 2 ) = h → 0 lim h 2 1 + 3 + 2 h 2 − 1 + 3 − 2 h 2 = h → 0 lim h 2 4 + 2 h 2 − 4 − 2 h 2 ⋅ 4 + 2 h 2 + 4 − 2 h 2 4 + 2 h 2 + 4 − 2 h 2 = h → 0 lim h 2 ( 4 + 2 h 2 + 4 − 2 h 2 ) ( 4 + 2 h 2 ) − ( 4 − 2 h 2 ) = h → 0 lim h 2 ( 4 + 2 h 2 + 4 − 2 h 2 ) 4 + 2 h 2 − 4 + 2 h 2 = h → 0 lim h 2 ( 4 + 2 h 2 + 4 − 2 h 2 ) 4 h 2 = h → 0 lim 4 + 2 h 2 + 4 − 2 h 2 4 = 4 + 2 ( 0 ) 2 + 4 − 2 ( 0 ) 2 4 = 4 + 0 + 4 − 0 4 = 4 + 4 4 = 2 + 2 4 = 4 4 = 1
CARA 2 : L'HOPITAL f ( x ) = 1 + x f ′ ( x ) = 1 2 1 + x \begin{aligned}
f(x)&=\sqrt{1+x}\\
f'(x)&=\dfrac1{2\sqrt{1+x}}
\end{aligned} f ( x ) f ′ ( x ) = 1 + x = 2 1 + x 1
lim h → 0 f ( 3 + 2 h 2 ) − f ( 3 − 2 h 2 ) h 2 = lim h → 0 4 h f ′ ( 3 + 2 h 2 ) − ( − 4 h ) f ′ ( 3 − 2 h 2 ) 2 h = lim h → 0 ( 2 f ′ ( 3 + 2 h 2 ) + 2 f ′ ( 3 − 2 h 2 ) ) = 2 f ′ ( 3 + 2 ( 0 ) 2 ) + 2 f ′ ( 3 − 2 ( 0 ) 2 ) = 2 f ′ ( 3 ) + 2 f ′ ( 3 ) = 4 f ′ ( 3 ) = 4 ( 1 2 1 + 3 ) = 4 2 4 = 4 2 ( 2 ) = 4 4 = 1 \begin{aligned}
\displaystyle\lim_{h\to0}\dfrac{f\left(3+2h^2\right)-f\left(3-2h^2\right)}{h^2}&=\displaystyle\lim_{h\to0}\dfrac{4h\ f'\left(3+2h^2\right)-(-4h)f'\left(3-2h^2\right)}{2h}\\[8pt]
&=\displaystyle\lim_{h\to0}\left(2f'\left(3+2h^2\right)+2f'\left(3-2h^2\right)\right)\\
&=2f'\left(3+2(0)^2\right)+2f'\left(3-2(0)^2\right)\\
&=2f'(3)+2f'(3)\\
&=4f'(3)\\
&=4\left(\dfrac1{2\sqrt{1+3}}\right)\\[8pt]
&=\dfrac4{2\sqrt4}\\[8pt]
&=\dfrac4{2(2)}\\[8pt]
&=\dfrac44\\
&=\boxed{\boxed{1}}
\end{aligned} h → 0 lim h 2 f ( 3 + 2 h 2 ) − f ( 3 − 2 h 2 ) = h → 0 lim 2 h 4 h f ′ ( 3 + 2 h 2 ) − ( − 4 h ) f ′ ( 3 − 2 h 2 ) = h → 0 lim ( 2 f ′ ( 3 + 2 h 2 ) + 2 f ′ ( 3 − 2 h 2 ) ) = 2 f ′ ( 3 + 2 ( 0 ) 2 ) + 2 f ′ ( 3 − 2 ( 0 ) 2 ) = 2 f ′ ( 3 ) + 2 f ′ ( 3 ) = 4 f ′ ( 3 ) = 4 ( 2 1 + 3 1 ) = 2 4 4 = 2 ( 2 ) 4 = 4 4 = 1 No. 15 Nilai dari
lim x → 3 x 2 + 3 x − 18 x 2 − 3 x \displaystyle\lim_{x\to3}\dfrac{x^2+3x-18}{x^2-3x} x → 3 lim x 2 − 3 x x 2 + 3 x − 1 8 adalah
lim x → 3 x 2 + 3 x − 18 x 2 − 3 x = lim x → 3 ( x + 6 ) ( x − 3 ) x ( x − 3 ) = lim x → 3 x + 6 x = 3 + 6 3 = 9 3 = 3 \begin{aligned}
\displaystyle\lim_{x\to3}\dfrac{x^2+3x-18}{x^2-3x}&=\displaystyle\lim_{x\to3}\dfrac{(x+6)\cancel{(x-3)}}{x\cancel{(x-3)}}\\[8pt]
&=\displaystyle\lim_{x\to3}\dfrac{x+6}x\\[8pt]
&=\dfrac{3+6}3\\[8pt]
&=\dfrac93\\
&=\boxed{\boxed{3}}
\end{aligned} x → 3 lim x 2 − 3 x x 2 + 3 x − 1 8 = x → 3 lim x ( x − 3 ) ( x + 6 ) ( x − 3 ) = x → 3 lim x x + 6 = 3 3 + 6 = 3 9 = 3 No. 16 Diketahui
lim x → a x − 2 x − 4 = 1 4 {\displaystyle\lim_{x\to a}\dfrac{\sqrt{x}-2}{x-4}=\dfrac14} x → a lim x − 4 x − 2 = 4 1 , nilai
a a a adalah
lim x → a x − 2 x − 4 = 1 4 lim x → a x − 2 x − 4 ⋅ x + 2 x + 2 = 1 4 lim x → a x − 4 ( x − 4 ) ( x + 2 ) = 1 4 lim x → a 1 x + 2 = 1 4 1 a + 2 = 1 4 a + 2 = 4 a = 2 a = 4 \begin{aligned}
\displaystyle\lim_{x\to a}\dfrac{\sqrt{x}-2}{x-4}&=\dfrac14\\[8pt]
\displaystyle\lim_{x\to a}\dfrac{\sqrt{x}-2}{x-4}\color{red}{\cdot\dfrac{\sqrt{x}+2}{\sqrt{x}+2}}&=\dfrac14\\[8pt]
\displaystyle\lim_{x\to a}\dfrac{\cancel{x-4}}{\cancel{(x-4)}\left(\sqrt{x}+2\right)}&=\dfrac14\\[8pt]
\displaystyle\lim_{x\to a}\dfrac1{\sqrt{x}+2}&=\dfrac14\\[8pt]
\dfrac1{\sqrt{a}+2}&=\dfrac14\\[8pt]
\sqrt{a}+2&=4\\
\sqrt{a}&=2\\
a&=4
\end{aligned} x → a lim x − 4 x − 2 x → a lim x − 4 x − 2 ⋅ x + 2 x + 2 x → a lim ( x − 4 ) ( x + 2 ) x − 4 x → a lim x + 2 1 a + 2 1 a + 2 a a = 4 1 = 4 1 = 4 1 = 4 1 = 4 1 = 4 = 2 = 4 No. 17 Jika
lim θ → − 1 f ( θ ) \displaystyle\lim_{\theta\to-1}f(\theta) θ → − 1 lim f ( θ ) ada dan
θ 2 + θ − 2 θ + 3 ≤ f ( θ ) θ + 3 ≤ θ 2 + 2 θ − 1 θ + 3 {\dfrac{\theta^2+\theta-2}{\theta+3}\leq\dfrac{f(\theta)}{\theta+3}\leq\dfrac{\theta^2+2\theta-1}{\theta+3}} θ + 3 θ 2 + θ − 2 ≤ θ + 3 f ( θ ) ≤ θ + 3 θ 2 + 2 θ − 1 , tentukan
lim θ → − 1 f ( θ ) \displaystyle\lim_{\theta\to-1}f(\theta) θ → − 1 lim f ( θ ) !
θ 2 + θ − 2 θ + 3 ≤ f ( θ ) θ + 3 ≤ θ 2 + 2 θ − 1 θ + 3 lim θ → − 1 θ 2 + θ − 2 θ + 3 ≤ lim θ → − 1 f ( θ ) θ + 3 ≤ lim θ → − 1 θ 2 + 2 θ − 1 θ + 3 ( − 1 ) 2 + ( − 1 ) − 2 − 1 + 3 ≤ lim θ → − 1 f ( θ ) − 1 + 3 ≤ ( − 1 ) 2 + 2 ( − 1 ) − 1 − 1 + 3 − 2 2 ≤ lim θ → − 1 f ( θ ) 2 ≤ − 2 2 × 2 − 2 ≤ lim θ → − 1 f ( θ ) ≤ − 2 \begin{array}{rcccll}
\dfrac{\theta^2+\theta-2}{\theta+3}&\leq&\dfrac{f(\theta)}{\theta+3}&\leq&\dfrac{\theta^2+2\theta-1}{\theta+3}\\[8pt]
\displaystyle\lim_{\theta\to-1}\dfrac{\theta^2+\theta-2}{\theta+3}&\leq&\displaystyle\lim_{\theta\to-1}\dfrac{f(\theta)}{\theta+3}&\leq&\displaystyle\lim_{\theta\to-1}\dfrac{\theta^2+2\theta-1}{\theta+3}\\[8pt]
\dfrac{(-1)^2+(-1)-2}{-1+3}&\leq&\dfrac{\displaystyle\lim_{\theta\to-1}f(\theta)}{-1+3}&\leq&\dfrac{(-1)^2+2(-1)-1}{-1+3}\\[8pt]
\dfrac{-2}2&\leq&\dfrac{\displaystyle\lim_{\theta\to-1}f(\theta)}2&\leq&\dfrac{-2}{2}&\quad\color{red}{\times2}\\[8pt]
-2&\leq&\displaystyle\lim_{\theta\to-1}f(\theta)&\leq&-2
\end{array} θ + 3 θ 2 + θ − 2 θ → − 1 lim θ + 3 θ 2 + θ − 2 − 1 + 3 ( − 1 ) 2 + ( − 1 ) − 2 2 − 2 − 2 ≤ ≤ ≤ ≤ ≤ θ + 3 f ( θ ) θ → − 1 lim θ + 3 f ( θ ) − 1 + 3 θ → − 1 lim f ( θ ) 2 θ → − 1 lim f ( θ ) θ → − 1 lim f ( θ ) ≤ ≤ ≤ ≤ ≤ θ + 3 θ 2 + 2 θ − 1 θ → − 1 lim θ + 3 θ 2 + 2 θ − 1 − 1 + 3 ( − 1 ) 2 + 2 ( − 1 ) − 1 2 − 2 − 2 × 2
lim θ → − 1 f ( θ ) = − 2 \displaystyle\lim_{\theta\to-1}f(\theta)=-2 θ → − 1 lim f ( θ ) = − 2 No. 18 Jika
lim x → 2 x 2 − 3 x + a x − 2 = 1 {\displaystyle\lim_{x\to2}\dfrac{x^2-3x+a}{x-2}=1} x → 2 lim x − 2 x 2 − 3 x + a = 1 maka nilai
a a a adalah ....
Jika
f ( x ) = x 2 − 3 x + a {f(x)=x^2-3x+a} f ( x ) = x 2 − 3 x + a , maka
f ( 2 ) = 0 {f(2)=0} f ( 2 ) = 0 .
2 2 − 3 ( 2 ) + a = 0 4 − 6 + a = 0 − 2 + a = 0 a = 2 \begin{aligned}
2^2-3(2)+a&=0\\
4-6+a&=0\\
-2+a&=0\\
a&=\boxed{\boxed{2}}
\end{aligned} 2 2 − 3 ( 2 ) + a 4 − 6 + a − 2 + a a = 0 = 0 = 0 = 2
0 Response to "Exercise Zone : Limit [2]"
Post a Comment