Berikut ini adalah kumpulan soal dan pembahasan mengenai limit. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Terima kasih.
No. 1
x→3limx−33−2x+3= ....
CARA 1
x→3limx−33−2x+3=x→3limx−33−2x+3⋅3+2x+33+2x+3=x→3lim(x−3)(3+2x+3)9−(2x+3)=x→3lim(x−3)(3+2x+3)9−2x−3=x→3lim(x−3)(3+2x+3)6−2x=x→3lim(x−3)(3+2x+3)−2(x−3)=x→3lim3+2x+3−2=3+2(3)+3−2=3+6+3−2=3+9−2=3+3−2=6−2=−31
CARA 2
x→3limx−33−2x+3=x→3lim1−00−22x+32=x→3lim(−2x+31)=−2(3)+31=−6+31=−91=−31
No. 2
x→3limx2−9(x−1−5−x)(4x−3−1)=....
- −612
- −412
- −212
- 612
- 212
x→3limx2−9(x−1−5−x)(4x−3−1)=x→3limx2−9(x−1−5−x)(4x−3−1)⋅x−1+5−xx−1+5−x=x→3lim(x2−9)(x−1+5−x)((x−1)−(5−x))(4x−3−1)=x→3lim(x2−9)(x−1+5−x)(x−1−5+x)(4x−3−1)=x→3lim(x2−9)(x−1+5−x)(2x−6)(4x−3−1)=x→3lim(x+3)(x−3)(x−1+5−x)2(x−3)(4x−3−1)=x→3lim(x+3)(x−1+5−x)2(4x−3−1)=(3+3)(3−1+5−3)2(4(3)−3−1)=(3+3)(2+2)2(9−1)=(6)(22)2(3−1)=6(2)2=321⋅22=3⋅212=612
No. 3
x→2lim(x2−x−26−x−22)= ....
x→2lim(x2−x−26−x−22)=x→2lim((x−2)(x+1)6−x−22)=x→2lim(x−2)(x+1)6−2(x+1)=x→2lim(x−2)(x+1)6−2x−2=x→2lim(x−2)(x+1)−2x+4=x→2lim(x−2)(x+1)−2(x−2)=x→2limx+1−2=2+1−2=−32
No. 4
x→−2limx3+8x3−x2−2x+8= ....
Ganesha Operation
CARA 1 : PEMFAKTORAN
x→−2limx3+8x3−x2−2x+8=x→−2lim(x+2)(x2−2x+4)(x+2)(x2−3x+4)=x→−2limx2−2x+4x2−3x+4=(−2)2−2(−2)+4(−2)2−3(−2)+4=4+4+44+6+4=1214=67
CARA 2 : L'HOPITAL
x→−2limx3+8x3−x2−2x+8=x→−2lim3x23x2−2x−2=3(−2)23(−2)2−2(−2)−2=1212+4−2=1214=67
No. 5
Diketahui fungsi
g kontinu di
x=2 dan
x→2limg(x)=4. Nilai
x→2lim(g(x)x−2x−2) adalah ....
Ganesha Operation
x→2lim(g(x)x−2x−2)=x→2lim(g(x)x−2x−2⋅x+2x+2)=x→2lim(g(x)x−2(x−2)(x+2))=x→2lim(g(x)(x+2))=4(2+2)=4(22)=82
No. 5
Tentukan nilai dari
x→5limx2+24−7x2−25!
Ganesha Operation
CARA 1 : KALIKAN DENGAN SEKAWAN
x→5limx2+24−7x2−25=x→5limx2+24−7x2−25⋅x2+24+7x2+24+7=x→5limx2+24−49(x2−25)(x2+24+7)=x→5limx2−25(x2−25)(x2+24+7)=x→5lim(x2+24+7)=52+24+7=25+24+7=49+7=7+7=14
CARA 2 : L'HOPITAL
x→5limx2+24−7x2−25=x→5lim2x2+242x2x=x→5lim2x2+24=252+24=225+24=249=2(7)=14
No. 6
Tentukan nilai dari
x→2limx3−8x3+2x2−4x−8!
Ganesha Operation
CARA 1 : PEMFAKTORAN
x→2limx3−8x3+2x2−4x−8=x→2lim(x−2)(x2+2x+4)(x−2)(x2+4x+4)=22+2(2)+422+4(2)+4=4+4+44+8+4=1216=34
CARA 2 : L'HOPITAL
x→2limx3−8x3+2x2−4x−8=x→2lim3x23x2+4x−4=3(2)23(2)2+4(2)−4=3(4)3(4)+8−4=1212+4=1216=34
No. 7
Jika
f(x)=cos(21x), maka
h→0limh2f(x+2h)−2f(x)+f(x−2h)= ....
- 21sin2x
- −161cos21x
- −161sin21x
- 161cos2x
- −161sin2x
CARA 1
h→0limh2f(x+2h)−2f(x)+f(x−2h)=h→0limh2cos21(x+2h)−2cos21x+cos21(x−2h)=h→0limh2cos(21x+4h)−2cos21x+cos(21x−4h)=h→0limh2cos21xcos4h−sin21xsin4h−2cos21x+cos21xcos4h+sin21xsin4h=h→0limh22cos21xcos4h−2cos21x+cos21xcos4h=h→0limh22cos21x(cos4h−1)=h→0limh22cos21x(1−2sin28h−1)=h→0limh2−4cos21xsin28h=h→0lim(−4cos21x)⋅hsin8h⋅hsin8h=−4cos21x⋅81⋅81=−161cos21x
CARA 2 : L'HOPITAL
f′(x)f′′(x)=−21sin21x=−41cos21x
h→0limh2f(x+2h)−2f(x)+f(x−2h)=h→0lim2h21f′(x+2h)−0+(−21)f′(x−2h)=h→0lim2h21f′(x+2h)−21f′(x−2h)=h→0lim241f′′(x+2h)+41f′′(x−2h)=241f′′(x+20)+41f′′(x−20)=241f′′(x)+41f′′(x)=221f′′(x)=41f′′(x)=41(−41cos21x)=−161cos21x
No. 8
f(x)=x2+2x
h→0lim4hf(x−2h)−f(x)=
h→0lim4hf(x−2h)−f(x)=h→0lim4h(x−2h)2+2(x−2h)−(x2+2x)=h→0lim4hx2−4xh+4h2+2x−4h−x2−2x=h→0lim4h−4xh+4h2+−4h=h→0lim(−x+h+−1)=−x+0−1=−x−1
No. 9
Jika
f(x)=x+xx−x, maka
x→0limf(x)=
- 0
- −21
- −1
CARA BIASA : KALI SEKAWAN
x→0limf(x)=x→0limx+xx−x⋅x−xx−x=x→0limx2−xx2−2xx+x=x→0limx(x−1)x(x−2x+1)=x→0limx−1x−2x+1=0−10−20+1=−11=−1
CARA L'HOPITAL
x→0limf(x)=x→0limx+xx−x=x→0lim1+2x11−2x1⋅2x2x=x→0lim2x+12x−1=20+120−1=1−1=−1
No. 10
x→2lim(3x+2)= ....
x→2lim(3x+2)=3(2)+2=6+2=8
0 Response to "Exercise Zone : Limit"
Post a Comment