Exercise Zone : Limit

Berikut ini adalah kumpulan soal dan pembahasan mengenai limit. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Terima kasih.


No. 1

limx332x+3x3=\displaystyle\lim_{x\to3}\dfrac{3-\sqrt{2x+3}}{x-3}= ....
CARA 1
limx332x+3x3=limx332x+3x33+2x+33+2x+3=limx39(2x+3)(x3)(3+2x+3)=limx392x3(x3)(3+2x+3)=limx362x(x3)(3+2x+3)=limx32(x3)(x3)(3+2x+3)=limx323+2x+3=23+2(3)+3=23+6+3=23+9=23+3=26=13\begin{aligned} \displaystyle\lim_{x\to3}\dfrac{3-\sqrt{2x+3}}{x-3}&=\displaystyle\lim_{x\to3}\dfrac{3-\sqrt{2x+3}}{x-3}\cdot\dfrac{3+\sqrt{2x+3}}{3+\sqrt{2x+3}}\\[9pt] &=\displaystyle\lim_{x\to3}\dfrac{9-(2x+3)}{(x-3)\left(3+\sqrt{2x+3}\right)}\\[9pt] &=\displaystyle\lim_{x\to3}\dfrac{9-2x-3}{(x-3)\left(3+\sqrt{2x+3}\right)}\\[9pt] &=\displaystyle\lim_{x\to3}\dfrac{6-2x}{(x-3)\left(3+\sqrt{2x+3}\right)}\\[9pt] &=\displaystyle\lim_{x\to3}\dfrac{-2(x-3)}{(x-3)\left(3+\sqrt{2x+3}\right)}\\[9pt] &=\displaystyle\lim_{x\to3}\dfrac{-2}{3+\sqrt{2x+3}}\\[9pt] &=\dfrac{-2}{3+\sqrt{2(3)+3}}\\[9pt] &=\dfrac{-2}{3+\sqrt{6+3}}\\[9pt] &=\dfrac{-2}{3+\sqrt9}\\[9pt] &=\dfrac{-2}{3+3}\\[9pt] &=\dfrac{-2}6\\[9pt] &=\boxed{\boxed{-\dfrac13}} \end{aligned}

CARA 2
limx332x+3x3=limx30222x+310=limx3(12x+3)=12(3)+3=16+3=19=13\begin{aligned} \displaystyle\lim_{x\to3}\dfrac{3-\sqrt{2x+3}}{x-3}&=\displaystyle\lim_{x\to3}\dfrac{0-\dfrac2{2\sqrt{2x+3}}}{1-0}\\[9pt] &=\displaystyle\lim_{x\to3}\left(-\dfrac1{\sqrt{2x+3}}\right)\\[9pt] &=-\dfrac1{\sqrt{2(3)+3}}\\[9pt] &=-\dfrac1{\sqrt{6+3}}\\[9pt] &=-\dfrac1{\sqrt9}\\[9pt] &=\boxed{\boxed{-\dfrac13}} \end{aligned}

No. 2

limx3(x15x)(4x31)x29=\displaystyle\lim_{x\to3}\dfrac{\left(\sqrt{x-1}-\sqrt{5-x}\right)\left(\sqrt{4x-3}-1\right)}{x^2-9}=....
  1. 162-\dfrac16\sqrt2
  2. 142-\dfrac14\sqrt2
  3. 122-\dfrac12\sqrt2
  1. 162\dfrac16\sqrt2
  2. 122\dfrac12\sqrt2
limx3(x15x)(4x31)x29=limx3(x15x)(4x31)x29x1+5xx1+5x=limx3((x1)(5x))(4x31)(x29)(x1+5x)=limx3(x15+x)(4x31)(x29)(x1+5x)=limx3(2x6)(4x31)(x29)(x1+5x)=limx32(x3)(4x31)(x+3)(x3)(x1+5x)=limx32(4x31)(x+3)(x1+5x)=2(4(3)31)(3+3)(31+53)=2(91)(3+3)(2+2)=2(31)(6)(22)=26(2)=13222=1322=162\begin{aligned} \displaystyle\lim_{x\to3}\dfrac{\left(\sqrt{x-1}-\sqrt{5-x}\right)\left(\sqrt{4x-3}-1\right)}{x^2-9}&=\displaystyle\lim_{x\to3}\dfrac{\left(\sqrt{x-1}-\sqrt{5-x}\right)\left(\sqrt{4x-3}-1\right)}{x^2-9}\cdot\dfrac{\sqrt{x-1}+\sqrt{5-x}}{\sqrt{x-1}+\sqrt{5-x}}\\[9pt] &=\displaystyle\lim_{x\to3}\dfrac{\left((x-1)-(5-x)\right)\left(\sqrt{4x-3}-1\right)}{\left(x^2-9\right)\left(\sqrt{x-1}+\sqrt{5-x}\right)}\\[9pt] &=\displaystyle\lim_{x\to3}\dfrac{(x-1-5+x)\left(\sqrt{4x-3}-1\right)}{\left(x^2-9\right)\left(\sqrt{x-1}+\sqrt{5-x}\right)}\\[9pt] &=\displaystyle\lim_{x\to3}\dfrac{(2x-6)\left(\sqrt{4x-3}-1\right)}{\left(x^2-9\right)\left(\sqrt{x-1}+\sqrt{5-x}\right)}\\[9pt] &=\displaystyle\lim_{x\to3}\dfrac{2(x-3)\left(\sqrt{4x-3}-1\right)}{(x+3)(x-3)\left(\sqrt{x-1}+\sqrt{5-x}\right)}\\[9pt] &=\displaystyle\lim_{x\to3}\dfrac{2\left(\sqrt{4x-3}-1\right)}{(x+3)\left(\sqrt{x-1}+\sqrt{5-x}\right)}\\[9pt] &=\dfrac{2\left(\sqrt{4(3)-3}-1\right)}{(3+3)\left(\sqrt{3-1}+\sqrt{5-3}\right)}\\[9pt] &=\dfrac{2\left(\sqrt9-1\right)}{(3+3)\left(\sqrt2+\sqrt2\right)}\\[9pt] &=\dfrac{2(3-1)}{(6)\left(2\sqrt2\right)}\\[9pt] &=\dfrac{2}{6\left(\sqrt2\right)}\\[9pt] &=\dfrac1{3\sqrt2}\cdot\dfrac{\sqrt2}{\sqrt2}\\[9pt] &=\dfrac1{3\cdot2}\sqrt2\\[9pt] &=\boxed{\boxed{\dfrac16\sqrt2}} \end{aligned}

No. 3

limx2(6x2x22x2)=\displaystyle\lim_{x\to2}\left(\dfrac6{x^2-x-2}-\dfrac2{x-2}\right)= ....
limx2(6x2x22x2)=limx2(6(x2)(x+1)2x2)=limx262(x+1)(x2)(x+1)=limx262x2(x2)(x+1)=limx22x+4(x2)(x+1)=limx22(x2)(x2)(x+1)=limx22x+1=22+1=23\begin{aligned} \displaystyle\lim_{x\to2}\left(\dfrac6{x^2-x-2}-\dfrac2{x-2}\right)&=\displaystyle\lim_{x\to2}\left(\dfrac6{(x-2)(x+1)}-\dfrac2{x-2}\right)\\[8pt] &=\displaystyle\lim_{x\to2}\dfrac{6-2(x+1)}{(x-2)(x+1)}\\[8pt] &=\displaystyle\lim_{x\to2}\dfrac{6-2x-2}{(x-2)(x+1)}\\[8pt] &=\displaystyle\lim_{x\to2}\dfrac{-2x+4}{(x-2)(x+1)}\\[8pt] &=\displaystyle\lim_{x\to2}\dfrac{-2\cancel{(x-2)}}{\cancel{(x-2)}(x+1)}\\[8pt] &=\displaystyle\lim_{x\to2}\dfrac{-2}{x+1}\\[8pt] &=\dfrac{-2}{2+1}\\[8pt] &=-\dfrac23 \end{aligned}

No. 4

limx2x3x22x+8x3+8=\displaystyle\lim_{x\to-2}\dfrac{x^3-x^2-2x+8}{x^3+8}= ....
Ganesha Operation

CARA 1 : PEMFAKTORAN

limx2x3x22x+8x3+8=limx2(x+2)(x23x+4)(x+2)(x22x+4)=limx2x23x+4x22x+4=(2)23(2)+4(2)22(2)+4=4+6+44+4+4=1412=76\begin{aligned} \displaystyle\lim_{x\to-2}\dfrac{x^3-x^2-2x+8}{x^3+8}&=\displaystyle\lim_{x\to-2}\dfrac{(x+2)\left(x^2-3x+4\right)}{(x+2)\left(x^2-2x+4\right)}\\[8pt] &=\displaystyle\lim_{x\to-2}\dfrac{x^2-3x+4}{x^2-2x+4}\\[8pt] &=\dfrac{(-2)^2-3(-2)+4}{(-2)^2-2(-2)+4}\\[8pt] &=\dfrac{4+6+4}{4+4+4}\\[8pt] &=\dfrac{14}{12}\\[8pt] &=\boxed{\boxed{\dfrac76}} \end{aligned}

CARA 2 : L'HOPITAL

limx2x3x22x+8x3+8=limx23x22x23x2=3(2)22(2)23(2)2=12+4212=1412=76\begin{aligned} \displaystyle\lim_{x\to-2}\dfrac{x^3-x^2-2x+8}{x^3+8}&=\displaystyle\lim_{x\to-2}\dfrac{3x^2-2x-2}{3x^2}\\[8pt] &=\dfrac{3(-2)^2-2(-2)-2}{3(-2)^2}\\[8pt] &=\dfrac{12+4-2}{12}\\[8pt] &=\dfrac{14}{12}\\[8pt] &=\boxed{\boxed{\dfrac76}} \end{aligned}

No. 5

Diketahui fungsi gg kontinu di x=2x=2 dan limx2g(x)=4\displaystyle\lim_{x\to2}g(x)=4. Nilai limx2(g(x)x2x2)\displaystyle\lim_{x\to2}\left(g(x)\dfrac{x-2}{\sqrt{x}-\sqrt2}\right) adalah ....
Ganesha Operation
limx2(g(x)x2x2)=limx2(g(x)x2x2x+2x+2)=limx2(g(x)(x2)(x+2)x2)=limx2(g(x)(x+2))=4(2+2)=4(22)=82\begin{aligned} \displaystyle\lim_{x\to2}\left(g(x)\dfrac{x-2}{\sqrt{x}-\sqrt2}\right)&=\displaystyle\lim_{x\to2}\left(g(x)\dfrac{x-2}{\sqrt{x}-\sqrt2}\cdot\dfrac{\sqrt{x}+\sqrt2}{\sqrt{x}+\sqrt2}\right)\\[8pt] &=\displaystyle\lim_{x\to2}\left(g(x)\dfrac{(x-2)\left(\sqrt{x}+\sqrt2\right)}{x-2}\right)\\[8pt] &=\displaystyle\lim_{x\to2}\left(g(x)\left(\sqrt{x}+\sqrt2\right)\right)\\ &=4\left(\sqrt2+\sqrt2\right)\\ &=4\left(2\sqrt2\right)\\ &=\boxed{\boxed{8\sqrt2}} \end{aligned}

No. 5

Tentukan nilai dari limx5x225x2+247\displaystyle\lim_{x\to5}\dfrac{x^2-25}{\sqrt{x^2+24}-7}!
Ganesha Operation

CARA 1 : KALIKAN DENGAN SEKAWAN

limx5x225x2+247=limx5x225x2+247x2+24+7x2+24+7=limx5(x225)(x2+24+7)x2+2449=limx5(x225)(x2+24+7)x225=limx5(x2+24+7)=52+24+7=25+24+7=49+7=7+7=14\begin{aligned} \displaystyle\lim_{x\to5}\dfrac{x^2-25}{\sqrt{x^2+24}-7}&=\displaystyle\lim_{x\to5}\dfrac{x^2-25}{\sqrt{x^2+24}-7}\cdot\dfrac{\sqrt{x^2+24}+7}{\sqrt{x^2+24}+7}\\[9pt] &=\displaystyle\lim_{x\to5}\dfrac{\left(x^2-25\right)\left(\sqrt{x^2+24}+7\right)}{x^2+24-49}\\[9pt] &=\displaystyle\lim_{x\to5}\dfrac{\left(x^2-25\right)\left(\sqrt{x^2+24}+7\right)}{x^2-25}\\[9pt] &=\displaystyle\lim_{x\to5}\left(\sqrt{x^2+24}+7\right)\\ &=\sqrt{5^2+24}+7\\ &=\sqrt{25+24}+7\\ &=\sqrt{49}+7\\ &=7+7\\ &=\boxed{\boxed{14}} \end{aligned}

CARA 2 : L'HOPITAL

limx5x225x2+247=limx52x2x2x2+24=limx52x2+24=252+24=225+24=249=2(7)=14\begin{aligned} \displaystyle\lim_{x\to5}\dfrac{x^2-25}{\sqrt{x^2+24}-7}&=\displaystyle\lim_{x\to5}\dfrac{2x}{\dfrac{2x}{2\sqrt{x^2+24}}}\\[9pt] &=\displaystyle\lim_{x\to5}2\sqrt{x^2+24}\\ &=2\sqrt{5^2+24}\\ &=2\sqrt{25+24}\\ &=2\sqrt{49}\\ &=2(7)\\ &=\boxed{\boxed{14}} \end{aligned}

No. 6

Tentukan nilai dari limx2x3+2x24x8x38\displaystyle\lim_{x\to2}\dfrac{x^3+2x^2-4x-8}{x^3-8}!
Ganesha Operation

CARA 1 : PEMFAKTORAN

212-4-8
288
1440
2100-8
248
1240
limx2x3+2x24x8x38=limx2(x2)(x2+4x+4)(x2)(x2+2x+4)=22+4(2)+422+2(2)+4=4+8+44+4+4=1612=43\begin{aligned} \displaystyle\lim_{x\to2}\dfrac{x^3+2x^2-4x-8}{x^3-8}&=\displaystyle\lim_{x\to2}\dfrac{\cancel{(x-2)}\left(x^2+4x+4\right)}{\cancel{(x-2)}\left(x^2+2x+4\right)}\\[9pt] &=\dfrac{2^2+4(2)+4}{2^2+2(2)+4}\\[9pt] &=\dfrac{4+8+4}{4+4+4}\\[9pt] &=\dfrac{16}{12}\\[9pt] &=\boxed{\boxed{\dfrac43}} \end{aligned}

CARA 2 : L'HOPITAL

limx2x3+2x24x8x38=limx23x2+4x43x2=3(2)2+4(2)43(2)2=3(4)+843(4)=12+412=1612=43\begin{aligned} \displaystyle\lim_{x\to2}\dfrac{x^3+2x^2-4x-8}{x^3-8}&=\displaystyle\lim_{x\to2}\dfrac{3x^2+4x-4}{3x^2}\\[9pt] &=\dfrac{3(2)^2+4(2)-4}{3(2)^2}\\[9pt] &=\dfrac{3(4)+8-4}{3(4)}\\[9pt] &=\dfrac{12+4}{12}\\[9pt] &=\dfrac{16}{12}\\[9pt] &=\boxed{\boxed{\dfrac43}} \end{aligned}

No. 7

Jika f(x)=cos(12x)f(x)=\cos\left(\dfrac12x\right), maka limh0f(x+h2)2f(x)+f(xh2)h2=\displaystyle\lim_{h\to0}\dfrac{f\left(x+\dfrac{h}2\right)-2f(x)+f\left(x-\dfrac{h}2\right)}{h^2}= ....
  1. 12sin2x\dfrac12\sin2x
  2. 116cos12x-\dfrac1{16}\cos\dfrac12x
  3. 116sin12x-\dfrac1{16}\sin\dfrac12x
  1. 116cos2x\dfrac1{16}\cos2x
  2. 116sin2x-\dfrac1{16}\sin2x

CARA 1

limh0f(x+h2)2f(x)+f(xh2)h2=limh0cos12(x+h2)2cos12x+cos12(xh2)h2=limh0cos(12x+h4)2cos12x+cos(12xh4)h2=limh0cos12xcosh4sin12xsinh42cos12x+cos12xcosh4+sin12xsinh4h2=limh02cos12xcosh42cos12x+cos12xcosh4h2=limh02cos12x(cosh41)h2=limh02cos12x(12sin2h81)h2=limh04cos12xsin2h8h2=limh0(4cos12x)sinh8hsinh8h=4cos12x1818=116cos12x\begin{aligned} \displaystyle\lim_{h\to0}\dfrac{f\left(x+\dfrac{h}2\right)-2f(x)+f\left(x-\dfrac{h}2\right)}{h^2}&=\displaystyle\lim_{h\to0}\dfrac{\cos\dfrac12\left(x+\dfrac{h}2\right)-2\cos\dfrac12x+\cos\dfrac12\left(x-\dfrac{h}2\right)}{h^2}\\[8pt] &=\displaystyle\lim_{h\to0}\dfrac{\cos\left(\dfrac12x+\dfrac{h}4\right)-2\cos\dfrac12x+\cos\left(\dfrac12x-\dfrac{h}4\right)}{h^2}\\[8pt] &=\displaystyle\lim_{h\to0}\dfrac{\cos\dfrac12x\cos\dfrac{h}4-\sin\dfrac12x\sin\dfrac{h}4-2\cos\dfrac12x+\cos\dfrac12x\cos\dfrac{h}4+\sin\dfrac12x\sin\dfrac{h}4}{h^2}\\[8pt] &=\displaystyle\lim_{h\to0}\dfrac{2\cos\dfrac12x\cos\dfrac{h}4-2\cos\dfrac12x+\cos\dfrac12x\cos\dfrac{h}4}{h^2}\\[8pt] &=\displaystyle\lim_{h\to0}\dfrac{2\cos\dfrac12x\left(\cos\dfrac{h}4-1\right)}{h^2}\\[8pt] &=\displaystyle\lim_{h\to0}\dfrac{2\cos\dfrac12x\left(1-2\sin^2\dfrac{h}8-1\right)}{h^2}\\[8pt] &=\displaystyle\lim_{h\to0}\dfrac{-4\cos\dfrac12x\sin^2\dfrac{h}8}{h^2}\\[8pt] &=\displaystyle\lim_{h\to0}\left(-4\cos\dfrac12x\right)\cdot\dfrac{\sin\dfrac{h}8}h\cdot\dfrac{\sin\dfrac{h}8}h\\[8pt] &=-4\cos\dfrac12x\cdot\dfrac18\cdot\dfrac18\\ &=\boxed{\boxed{-\dfrac1{16}\cos\dfrac12x}} \end{aligned}

CARA 2 : L'HOPITAL

f(x)=12sin12xf(x)=14cos12x\begin{aligned} f'(x)&=-\dfrac12\sin\dfrac12x\\[8pt] f''(x)&=-\dfrac14\cos\dfrac12x \end{aligned}

limh0f(x+h2)2f(x)+f(xh2)h2=limh012f(x+h2)0+(12)f(xh2)2h=limh012f(x+h2)12f(xh2)2h=limh014f(x+h2)+14f(xh2)2=14f(x+02)+14f(x02)2=14f(x)+14f(x)2=12f(x)2=14f(x)=14(14cos12x)=116cos12x\begin{aligned} \displaystyle\lim_{h\to0}\dfrac{f\left(x+\dfrac{h}2\right)-2f(x)+f\left(x-\dfrac{h}2\right)}{h^2}&=\displaystyle\lim_{h\to0}\dfrac{\dfrac12f'\left(x+\dfrac{h}2\right)-0+\left(-\dfrac12\right)f'\left(x-\dfrac{h}2\right)}{2h}\\[8pt] &=\displaystyle\lim_{h\to0}\dfrac{\dfrac12f'\left(x+\dfrac{h}2\right)-\dfrac12f'\left(x-\dfrac{h}2\right)}{2h}\\[8pt] &=\displaystyle\lim_{h\to0}\dfrac{\dfrac14f''\left(x+\dfrac{h}2\right)+\dfrac14f''\left(x-\dfrac{h}2\right)}2\\[8pt] &=\dfrac{\dfrac14f''\left(x+\dfrac02\right)+\dfrac14f''\left(x-\dfrac02\right)}2\\[8pt] &=\dfrac{\dfrac14f''\left(x\right)+\dfrac14f''\left(x\right)}2\\[8pt] &=\dfrac{\dfrac12f''\left(x\right)}2\\[8pt] &=\dfrac14f''\left(x\right)\\[8pt] &=\dfrac14\left(-\dfrac14\cos\dfrac12x\right)\\ &=\boxed{\boxed{-\dfrac1{16}\cos\dfrac12x}} \end{aligned}

No. 8

f(x)=x2+2xf(x)=x^2+2x
limh0f(x2h)f(x)4h=\displaystyle\lim_{h\to0}\dfrac{f(x-2h)-f(x)}{4h}=
limh0f(x2h)f(x)4h=limh0(x2h)2+2(x2h)(x2+2x)4h=limh0x24xh+4h2+2x4hx22x4h=limh04xh+4h2+4h4h=limh0(x+h+1)=x+01=x1\begin{aligned} \displaystyle\lim_{h\to0}\dfrac{f(x-2h)-f(x)}{4h}&=\displaystyle\lim_{h\to0}\dfrac{(x-2h)^2+2(x-2h)-\left(x^2+2x\right)}{4h}\\[8pt] &=\displaystyle\lim_{h\to0}\dfrac{x^2-4xh+4h^2+2x-4h-x^2-2x}{4h}\\[8pt] &=\displaystyle\lim_{h\to0}\dfrac{-4xh+4h^2+-4h}{4h}\\[8pt] &=\displaystyle\lim_{h\to0}(-x+h+-1)\\ &=-x+0-1\\ &=-x-1 \end{aligned}

No. 9

Jika f(x)=xxx+xf(x)=\dfrac{x-\sqrt{x}}{x+\sqrt{x}}, maka limx0f(x)=\displaystyle\lim_{x\to0}f(x)=
  1. 00
  2. 12-\dfrac12
  3. 1-1
  1. 2-2
  2. \infty

CARA BIASA : KALI SEKAWAN

limx0f(x)=limx0xxx+xxxxx=limx0x22xx+xx2x=limx0x(x2x+1)x(x1)=limx0x2x+1x1=020+101=11=1\begin{aligned} \displaystyle\lim_{x\to0}f(x)&=\displaystyle\lim_{x\to0}\dfrac{x-\sqrt{x}}{x+\sqrt{x}}\cdot\dfrac{x-\sqrt{x}}{x-\sqrt{x}}\\[8pt] &=\displaystyle\lim_{x\to0}\dfrac{x^2-2x\sqrt{x}+x}{x^2-x}\\[8pt] &=\displaystyle\lim_{x\to0}\dfrac{x(x-2\sqrt{x}+1)}{x(x-1)}\\[8pt] &=\displaystyle\lim_{x\to0}\dfrac{x-2\sqrt{x}+1}{x-1}\\[8pt] &=\dfrac{0-2\sqrt{0}+1}{0-1}\\[8pt] &=\dfrac1{-1}\\ &=\boxed{\boxed{-1}} \end{aligned}

CARA L'HOPITAL

limx0f(x)=limx0xxx+x=limx0112x1+12x2x2x=limx02x12x+1=20120+1=11=1\begin{aligned} \displaystyle\lim_{x\to0}f(x)&=\displaystyle\lim_{x\to0}\dfrac{x-\sqrt{x}}{x+\sqrt{x}}\\[8pt] &=\displaystyle\lim_{x\to0}\dfrac{1-\dfrac1{2\sqrt{x}}}{1+\dfrac1{2\sqrt{x}}}\cdot\dfrac{2\sqrt{x}}{2\sqrt{x}}\\[8pt] &=\displaystyle\lim_{x\to0}\dfrac{2\sqrt{x}-1}{2\sqrt{x}+1}\\[8pt] &=\dfrac{2\sqrt{0}-1}{2\sqrt{0}+1}\\[8pt] &=\dfrac{-1}1\\ &=\boxed{\boxed{-1}} \end{aligned}

No. 10

limx2(3x+2)=\displaystyle\lim_{x\to2}(3x+2)= ....
  1. 44
  2. 55
  3. 66
  1. 77
  2. 88
limx2(3x+2)=3(2)+2=6+2=8\begin{aligned} \displaystyle\lim_{x\to2}(3x+2)&=3(2)+2\\ &=6+2\\ &=\boxed{\boxed{8}} \end{aligned}

Related Posts

0 Response to "Exercise Zone : Limit"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel