Berikut ini adalah kumpulan soal dan pembahasan mengenai limit tingkat SBMPTN. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Terima kasih.
No. 1 Diketahui
f ( x ) = x 2 + a x + b f(x)=x^2+ax+b f ( x ) = x 2 + a x + b dengan
f ( 3 ) = 1 f(3)=1 f ( 3 ) = 1 . Jika
lim x → 3 x − 3 f ( x ) − f ( 3 ) = 1 2 \displaystyle\lim_{x\to3}\dfrac{x-3}{f(x)-f(3)}=\dfrac12 x → 3 lim f ( x ) − f ( 3 ) x − 3 = 2 1 maka
a + b = a+b= a + b = ....
f ′ ( x ) = 2 x + a f'(x)=2x+a f ′ ( x ) = 2 x + a
lim x → 3 x − 3 f ( x ) − f ( 3 ) = 1 2 lim x → 3 1 f ′ ( x ) = 1 2 1 f ′ ( 3 ) = 1 2 1 2 ( 3 ) + a = 1 2 1 6 + a = 1 2 6 + a = 2 a = − 4 \begin{aligned}
\displaystyle\lim_{x\to3}\dfrac{x-3}{f(x)-f(3)}&=\dfrac12\\
\displaystyle\lim_{x\to3}\dfrac1{f'(x)}&=\dfrac12\\
\dfrac1{f'(3)}&=\dfrac12\\
\dfrac1{2(3)+a}&=\dfrac12\\
\dfrac1{6+a}&=\dfrac12\\
6+a&=2\\
a&=-4
\end{aligned} x → 3 lim f ( x ) − f ( 3 ) x − 3 x → 3 lim f ′ ( x ) 1 f ′ ( 3 ) 1 2 ( 3 ) + a 1 6 + a 1 6 + a a = 2 1 = 2 1 = 2 1 = 2 1 = 2 1 = 2 = − 4
f ( x ) = x 2 + ( − 4 ) x + b = x 2 − 4 x + b \begin{aligned}
f(x)&=x^2+(-4)x+b\\
&=x^2-4x+b
\end{aligned} f ( x ) = x 2 + ( − 4 ) x + b = x 2 − 4 x + b
f ( 3 ) = 1 3 2 − 4 ( 3 ) + b = 1 9 − 12 + b = 1 − 3 + b = 1 b = 4 \begin{aligned}
f(3)&=1\\
3^2-4(3)+b&=1\\
9-12+b&=1\\
-3+b&=1\\
b&=4
\end{aligned} f ( 3 ) 3 2 − 4 ( 3 ) + b 9 − 1 2 + b − 3 + b b = 1 = 1 = 1 = 1 = 4
a + b = − 4 + 4 = 0 \begin{aligned}
a+b&=-4+4\\
&=0
\end{aligned} a + b = − 4 + 4 = 0 No. 2 Diketahui suku banyak
f ( x ) = a x 2 − ( a + b ) x − 3 {f(x)=ax^2-(a+b)x-3} f ( x ) = a x 2 − ( a + b ) x − 3 habis dibagi
x + 1 {x+1} x + 1 . Jika
lim x → − 1 f ( x ) x 2 − x − 2 = 2 \displaystyle\lim_{x\to-1}\dfrac{f(x)}{x^2-x-2}=2 x → − 1 lim x 2 − x − 2 f ( x ) = 2 , maka nilai
a + b a+b a + b adalah ....
habis dibagi
x + 1 x+1 x + 1 artinya
f ( − 1 ) = 0 f(-1)=0 f ( − 1 ) = 0
f ( − 1 ) = 0 a ( − 1 ) 2 − ( a + b ) ( − 1 ) − 3 = 0 a + a + b − 3 = 0 2 a + b = 3 \begin{aligned}
f(-1)&=0\\
a(-1)^2-(a+b)(-1)-3&=0\\
a+a+b-3&=0\\
2a+b&=3
\end{aligned} f ( − 1 ) a ( − 1 ) 2 − ( a + b ) ( − 1 ) − 3 a + a + b − 3 2 a + b = 0 = 0 = 0 = 3
f ′ ( x ) = 2 a x − a − b f'(x)=2ax-a-b f ′ ( x ) = 2 a x − a − b
lim x → − 1 f ( x ) x 2 − x − 2 = 2 lim x → − 1 f ′ ( x ) 2 x − 1 = 2 f ′ ( − 1 ) 2 ( − 1 ) − 1 = 2 2 a ( − 1 ) − a − b − 3 = 2 − 2 a − a − b = − 6 3 a + b = 6 \begin{aligned}
\displaystyle\lim_{x\to-1}\dfrac{f(x)}{x^2-x-2}&=2\\
\displaystyle\lim_{x\to-1}\dfrac{f'(x)}{2x-1}&=2\\
\dfrac{f'(-1)}{2(-1)-1}&=2\\
\dfrac{2a(-1)-a-b}{-3}&=2\\
-2a-a-b&=-6\\
3a+b&=6
\end{aligned} x → − 1 lim x 2 − x − 2 f ( x ) x → − 1 lim 2 x − 1 f ′ ( x ) 2 ( − 1 ) − 1 f ′ ( − 1 ) − 3 2 a ( − 1 ) − a − b − 2 a − a − b 3 a + b = 2 = 2 = 2 = 2 = − 6 = 6
3 a + b = 6 2 a + b = 3 − a = 3 \begin{aligned}
3a+b&=6\\
2a+b&=3\qquad-\\\hline
a&=3
\end{aligned} 3 a + b 2 a + b a = 6 = 3 − = 3
2 a + b = 3 2 ( 3 ) + b = 3 b = − 3 \begin{aligned}
2a+b&=3\\
2(3)+b&=3\\
b&=-3
\end{aligned} 2 a + b 2 ( 3 ) + b b = 3 = 3 = − 3
a + b = 3 + ( − 3 ) = 0 \begin{aligned}
a+b&=3+(-3)\\
&=0
\end{aligned} a + b = 3 + ( − 3 ) = 0 No. 3 lim x → 1 ( 1 1 − x − 2 x − x 3 ) \displaystyle\lim_{x\to1}\left(\dfrac1{1-x}-\dfrac2{x-x^3}\right) x → 1 lim ( 1 − x 1 − x − x 3 2 ) =
− 3 2 -\dfrac32 − 2 3
− 2 3 -\dfrac23 − 3 2
2 3 \dfrac23 3 2
UM UGM '05 Kode 621
lim x → 1 ( 1 1 − x − 2 x − x 3 ) = lim x → 1 ( 1 1 − x − 2 x ( 1 + x ) ( 1 − x ) ) = lim x → 1 ( x ( 1 + x ) x ( 1 + x ) ( 1 − x ) − 2 x ( 1 + x ) ( 1 − x ) ) = lim x → 1 x + x 2 − 2 x ( 1 + x ) ( 1 − x ) = lim x → 1 ( x + 2 ) ( x − 1 ) x ( 1 + x ) ( 1 − x ) = lim x → 1 − ( x + 2 ) ( 1 − x ) x ( 1 + x ) ( 1 − x ) = − ( 1 + 2 ) 1 ( 1 + 1 ) = − 3 2 = − 3 2 \begin{aligned}
\displaystyle\lim_{x\to1}\left(\dfrac1{1-x}-\dfrac2{x-x^3}\right)&=\displaystyle\lim_{x\to1}\left(\dfrac1{1-x}-\dfrac2{x(1+x)(1-x)}\right)\\[8pt]
&=\displaystyle\lim_{x\to1}\left(\dfrac{x(1+x)}{x(1+x)(1-x)}-\dfrac2{x(1+x)(1-x)}\right)\\[8pt]
&=\displaystyle\lim_{x\to1}\dfrac{x+x^2-2}{x(1+x)(1-x)}\\[8pt]
&=\displaystyle\lim_{x\to1}\dfrac{(x+2)(x-1)}{x(1+x)(1-x)}\\[8pt]
&=\displaystyle\lim_{x\to1}\dfrac{-(x+2)(1-x)}{x(1+x)(1-x)}\\[8pt]
&=\dfrac{-(1+2)}{1(1+1)}\\[8pt]
&=\dfrac{-3}2\\
&=\boxed{\boxed{-\dfrac32}}
\end{aligned} x → 1 lim ( 1 − x 1 − x − x 3 2 ) = x → 1 lim ( 1 − x 1 − x ( 1 + x ) ( 1 − x ) 2 ) = x → 1 lim ( x ( 1 + x ) ( 1 − x ) x ( 1 + x ) − x ( 1 + x ) ( 1 − x ) 2 ) = x → 1 lim x ( 1 + x ) ( 1 − x ) x + x 2 − 2 = x → 1 lim x ( 1 + x ) ( 1 − x ) ( x + 2 ) ( x − 1 ) = x → 1 lim x ( 1 + x ) ( 1 − x ) − ( x + 2 ) ( 1 − x ) = 1 ( 1 + 1 ) − ( 1 + 2 ) = 2 − 3 = − 2 3 No. 12 lim x → 5 x + 2 x + 1 x − 2 x + 1 = \displaystyle\lim_{x\to5}\dfrac{\sqrt{x+2\sqrt{x+1}}}{\sqrt{x-2\sqrt{x+1}}}= x → 5 lim x − 2 x + 1 x + 2 x + 1 = 3 + 2 \sqrt3+\sqrt2 3 + 2
5 − 2 6 5-2\sqrt6 5 − 2 6
2 6 2\sqrt6 2 6
GRUP WHATSAPP
lim x → 5 x + 2 x + 1 x − 2 x + 1 = lim x → 5 x + 2 x + 1 x − 2 x + 1 ⋅ x + 2 x + 1 x + 2 x + 1 = lim x → 5 x + 2 x + 1 x 2 − 4 ( x + 1 ) = 5 + 2 5 + 1 5 2 − 4 ( 5 + 1 ) = 5 + 2 6 25 − 24 = 5 + 2 6 1 = 5 + 2 6 \begin{aligned}
\displaystyle\lim_{x\to5}\dfrac{\sqrt{x+2\sqrt{x+1}}}{\sqrt{x-2\sqrt{x+1}}}&=\displaystyle\lim_{x\to5}\dfrac{\sqrt{x+2\sqrt{x+1}}}{\sqrt{x-2\sqrt{x+1}}}\cdot\dfrac{\sqrt{x+2\sqrt{x+1}}}{\sqrt{x+2\sqrt{x+1}}}\\[8pt]
&=\displaystyle\lim_{x\to5}\dfrac{x+2\sqrt{x+1}}{\sqrt{x^2-4(x+1)}}\\[8pt]
&=\dfrac{5+2\sqrt{5+1}}{\sqrt{5^2-4(5+1)}}\\[8pt]
&=\dfrac{5+2\sqrt6}{\sqrt{25-24}}\\[8pt]
&=\dfrac{5+2\sqrt6}{\sqrt1}\\
&=\boxed{\boxed{5+2\sqrt6}}
\end{aligned} x → 5 lim x − 2 x + 1 x + 2 x + 1 = x → 5 lim x − 2 x + 1 x + 2 x + 1 ⋅ x + 2 x + 1 x + 2 x + 1 = x → 5 lim x 2 − 4 ( x + 1 ) x + 2 x + 1 = 5 2 − 4 ( 5 + 1 ) 5 + 2 5 + 1 = 2 5 − 2 4 5 + 2 6 = 1 5 + 2 6 = 5 + 2 6
13 Jika
f ( x ) = a x + b f(x)=ax+b f ( x ) = a x + b dan
lim x → 4 ( 3 x ⋅ f ( x ) x − 4 ) = 24 \displaystyle\lim_{x\to4}\left(\dfrac{3x\cdot f(x)}{x-4}\right)=24 x → 4 lim ( x − 4 3 x ⋅ f ( x ) ) = 2 4 , maka nilai
f ( 5 ) = f(5)= f ( 5 ) =
CARA 1 3 ( 4 ) ⋅ f ( 4 ) = 0 12 ( 4 a + b ) = 0 4 a + b = 0 \begin{aligned}
3(4)\cdot f(4)&=0\\
12(4a+b)&=0\\
4a+b&=0
\end{aligned} 3 ( 4 ) ⋅ f ( 4 ) 1 2 ( 4 a + b ) 4 a + b = 0 = 0 = 0
Gunakan aturan L'hopital
lim x → 4 ( 3 x ⋅ f ( x ) x − 4 ) = 24 lim x → 4 ( 3 f ( x ) + 3 x ⋅ f ′ ( x ) 1 ) = 24 3 f ( 4 ) + 3 ( 4 ) f ′ ( 4 ) = 24 3 ( 4 a + b ) + 12 ( a ) = 24 3 ( 0 ) + 12 a = 24 12 a = 24 a = 2 \begin{aligned}
\displaystyle\lim_{x\to4}\left(\dfrac{3x\cdot f(x)}{x-4}\right)&=24\\[8pt]
\displaystyle\lim_{x\to4}\left(\dfrac{3f(x)+3x\cdot f'(x)}1\right)&=24\\[8pt]
3f(4)+3(4)f'(4)&=24\\
3(4a+b)+12(a)&=24\\
3(0)+12a&=24\\
12a&=24\\
a&=2
\end{aligned} x → 4 lim ( x − 4 3 x ⋅ f ( x ) ) x → 4 lim ( 1 3 f ( x ) + 3 x ⋅ f ′ ( x ) ) 3 f ( 4 ) + 3 ( 4 ) f ′ ( 4 ) 3 ( 4 a + b ) + 1 2 ( a ) 3 ( 0 ) + 1 2 a 1 2 a a = 2 4 = 2 4 = 2 4 = 2 4 = 2 4 = 2 4 = 2
4 a + b = 0 4 ( 2 ) + b = 0 8 + b = 0 b = − 8 \begin{aligned}
4a+b&=0\\
4(2)+b&=0\\
8+b&=0\\
b&=-8
\end{aligned} 4 a + b 4 ( 2 ) + b 8 + b b = 0 = 0 = 0 = − 8
f ( x ) = 2 x − 8 f(x)=2x-8 f ( x ) = 2 x − 8
f ( 5 ) = 2 ( 5 ) − 8 = 10 − 8 = 2 \begin{aligned}
f(5)&=2(5)-8\\
&=10-8\\
&=\boxed{\boxed{2}}
\end{aligned} f ( 5 ) = 2 ( 5 ) − 8 = 1 0 − 8 = 2
CARA 2 f ( x ) f(x) f ( x ) adalah fungsi linier, dan
x − 4 x-4 x − 4 harus menjadi salah satu faktornya, sehingga bisa kita tulis
f ( x ) = p ( x − 4 ) f(x)=p(x-4) f ( x ) = p ( x − 4 )
lim x → 4 ( 3 x ⋅ f ( x ) x − 4 ) = 24 lim x → 4 ( 3 x ⋅ p ( x − 4 ) x − 4 ) = 24 lim x → 4 3 x p = 24 3 ( 4 ) p = 24 12 p = 24 p = 2 \begin{aligned}
\displaystyle\lim_{x\to4}\left(\dfrac{3x\cdot f(x)}{x-4}\right)&=24\\[8pt]
\displaystyle\lim_{x\to4}\left(\dfrac{3x\cdot p(x-4)}{x-4}\right)&=24\\[8pt]
\displaystyle\lim_{x\to4}3xp&=24\\
3(4)p&=24\\
12p&=24\\
p&=2
\end{aligned} x → 4 lim ( x − 4 3 x ⋅ f ( x ) ) x → 4 lim ( x − 4 3 x ⋅ p ( x − 4 ) ) x → 4 lim 3 x p 3 ( 4 ) p 1 2 p p = 2 4 = 2 4 = 2 4 = 2 4 = 2 4 = 2
f ( x ) = 2 ( x − 4 ) f(x)=2(x-4) f ( x ) = 2 ( x − 4 )
f ( 5 ) = 2 ( 5 − 4 ) = 2 ( 1 ) = 2 \begin{aligned}
f(5)&=2(5-4)\\
&=2(1)\\
&=\boxed{\boxed{2}}
\end{aligned} f ( 5 ) = 2 ( 5 − 4 ) = 2 ( 1 ) = 2 No. 6 Nilai
lim x → a ( 5 f ( x ) − 3 g ( x ) ) = 11 \displaystyle\lim_{x\to a}\left(5f(x)-3g(x)\right)=11 x → a lim ( 5 f ( x ) − 3 g ( x ) ) = 1 1 dan
lim x → a ( 2 f ( x ) + 3 g ( x ) ) = 17 \displaystyle\lim_{x\to a}\left(2f(x)+3g(x)\right)=17 x → a lim ( 2 f ( x ) + 3 g ( x ) ) = 1 7 , maka nilai
lim x → a ( f ( x ) ⋅ g ( x ) ) = \displaystyle\lim_{x\to a}\left(f(x)\cdot g(x)\right)= x → a lim ( f ( x ) ⋅ g ( x ) ) =
lim x → a ( 5 f ( x ) − 3 g ( x ) ) = 11 lim x → a ( 2 f ( x ) + 3 g ( x ) ) = 17 + lim x → a 7 f ( x ) = 28 lim x → a f ( x ) = 4 \begin{aligned}
\displaystyle\lim_{x\to a}\left(5f(x)-3g(x)\right)&=11\\
\displaystyle\lim_{x\to a}\left(2f(x)+3g(x)\right)&=17\qquad&\color{red}{+}\\\hline
\displaystyle\lim_{x\to a}7f(x)&=28\\
\displaystyle\lim_{x\to a}f(x)&=4
\end{aligned} x → a lim ( 5 f ( x ) − 3 g ( x ) ) x → a lim ( 2 f ( x ) + 3 g ( x ) ) x → a lim 7 f ( x ) x → a lim f ( x ) = 1 1 = 1 7 = 2 8 = 4 +
lim x → a ( 5 f ( x ) − 3 g ( x ) ) = 11 5 ( 4 ) − lim x → a 3 g ( x ) = 11 20 − lim x → a 3 g ( x ) = 11 − lim x → a 3 g ( x ) = − 9 lim x → a 3 g ( x ) = 9 lim x → a g ( x ) = 3 \begin{aligned}
\displaystyle\lim_{x\to a}\left(5f(x)-3g(x)\right)&=11\\
5(4)-\displaystyle\lim_{x\to a}3g(x)&=11\\
20-\displaystyle\lim_{x\to a}3g(x)&=11\\
-\displaystyle\lim_{x\to a}3g(x)&=-9\\
\displaystyle\lim_{x\to a}3g(x)&=9\\
\displaystyle\lim_{x\to a}g(x)&=3
\end{aligned} x → a lim ( 5 f ( x ) − 3 g ( x ) ) 5 ( 4 ) − x → a lim 3 g ( x ) 2 0 − x → a lim 3 g ( x ) − x → a lim 3 g ( x ) x → a lim 3 g ( x ) x → a lim g ( x ) = 1 1 = 1 1 = 1 1 = − 9 = 9 = 3
lim x → a ( f ( x ) ⋅ g ( x ) ) = 4 ⋅ 3 = 12 \begin{aligned}
\displaystyle\lim_{x\to a}\left(f(x)\cdot g(x)\right)&=4\cdot3\\
&=\boxed{\boxed{12}}
\end{aligned} x → a lim ( f ( x ) ⋅ g ( x ) ) = 4 ⋅ 3 = 1 2 No. 7 Jika
lim x → 1 a x 4 + b − 2 x − 1 = M \displaystyle\lim_{x\to1}\dfrac{\sqrt{ax^4+b}-2}{x-1}=M x → 1 lim x − 1 a x 4 + b − 2 = M maka
lim x → 1 a x 4 + b − 2 x x 2 + 2 x − 3 = \displaystyle\lim_{x\to1}\dfrac{\sqrt{ax^4+b}-2x}{x^2+2x-3}= x → 1 lim x 2 + 2 x − 3 a x 4 + b − 2 x = ....
2 M − 1 2M-1 2 M − 1
1 2 ( M − 1 ) \dfrac12(M-1) 2 1 ( M − 1 )
1 4 ( M − 2 ) \dfrac14(M-2) 4 1 ( M − 2 )
2 M + 2 2M+2 2 M + 2
4 M − 2 4M-2 4 M − 2
CARA 1 lim x → 1 a x 4 + b − 2 x − 1 = M lim x → 1 4 a x 3 2 a x 4 + b 1 = M lim x → 1 4 a x 3 2 a x 4 + b = M L’hopital \begin{aligned}
\displaystyle\lim_{x\to1}\dfrac{\sqrt{ax^4+b}-2}{x-1}&=M\\[8pt]
\displaystyle\lim_{x\to1}\dfrac{\dfrac{4ax^3}{2\sqrt{ax^4+b}}}1&=M\\[8pt]
\displaystyle\lim_{x\to1}\dfrac{4ax^3}{2\sqrt{ax^4+b}}&=M\qquad\color{red}{\text{L'hopital}}
\end{aligned} x → 1 lim x − 1 a x 4 + b − 2 x → 1 lim 1 2 a x 4 + b 4 a x 3 x → 1 lim 2 a x 4 + b 4 a x 3 = M = M = M L’hopital
lim x → 1 a x 4 + b − 2 x x 2 + 2 x − 3 = lim x → 1 4 a x 3 2 a x 4 + b − 2 2 x + 2 L’hopital = M − 2 2 ( 1 ) + 2 = M − 2 4 = 1 4 ( M − 2 ) \begin{aligned}
\displaystyle\lim_{x\to1}\dfrac{\sqrt{ax^4+b}-2x}{x^2+2x-3}&=\displaystyle\lim_{x\to1}\dfrac{\dfrac{4ax^3}{2\sqrt{ax^4+b}}-2}{2x+2}\qquad\color{red}{\text{L'hopital}}\\[8pt]
&=\dfrac{M-2}{2(1)+2}\\[8pt]
&=\dfrac{M-2}4\\
&=\boxed{\boxed{\dfrac14(M-2)}}
\end{aligned} x → 1 lim x 2 + 2 x − 3 a x 4 + b − 2 x = x → 1 lim 2 x + 2 2 a x 4 + b 4 a x 3 − 2 L’hopital = 2 ( 1 ) + 2 M − 2 = 4 M − 2 = 4 1 ( M − 2 )
CARA 2 lim x → 1 a x 4 + b − 2 x x 2 + 2 x − 3 = lim x → 1 a x 4 + b − 2 − 2 x + 2 ( x − 1 ) ( x + 3 ) = lim x → 1 a x 4 + b − 2 − 2 ( x − 1 ) ( x − 1 ) ( x + 3 ) = lim x → 1 a x 4 + b − 2 x − 1 − 2 x + 3 = M − 2 1 + 3 = M − 2 4 = 1 4 ( M − 2 ) \begin{aligned}
\displaystyle\lim_{x\to1}\dfrac{\sqrt{ax^4+b}-2x}{x^2+2x-3}&=\displaystyle\lim_{x\to1}\dfrac{\sqrt{ax^4+b}-2-2x+2}{(x-1)(x+3)}\\[8pt]
&=\displaystyle\lim_{x\to1}\dfrac{\sqrt{ax^4+b}-2-2(x-1)}{(x-1)(x+3)}\\[8pt]
&=\displaystyle\lim_{x\to1}\dfrac{\dfrac{\sqrt{ax^4+b}-2}{x-1}-2}{x+3}\\[8pt]
&=\dfrac{M-2}{1+3}\\[8pt]
&=\dfrac{M-2}4\\
&=\boxed{\boxed{\dfrac14(M-2)}}
\end{aligned} x → 1 lim x 2 + 2 x − 3 a x 4 + b − 2 x = x → 1 lim ( x − 1 ) ( x + 3 ) a x 4 + b − 2 − 2 x + 2 = x → 1 lim ( x − 1 ) ( x + 3 ) a x 4 + b − 2 − 2 ( x − 1 ) = x → 1 lim x + 3 x − 1 a x 4 + b − 2 − 2 = 1 + 3 M − 2 = 4 M − 2 = 4 1 ( M − 2 ) No. 8 Diketahui suku banyak
g ( x ) = a x 2 + ( a − b ) x + 1 g(x)=ax^2+(a-b)x+1 g ( x ) = a x 2 + ( a − b ) x + 1 habis dibagi
x + 1 x+1 x + 1 . Jika
lim x → − 1 g ( x ) x 2 + 3 x + 2 = 4 \displaystyle\lim_{x\to-1}\dfrac{g(x)}{x^2+3x+2}=4 x → − 1 lim x 2 + 3 x + 2 g ( x ) = 4 , maka nilai
2 a − b 2a-b 2 a − b adalah
g ( x ) = a x 2 + ( a − b ) x + 1 g(x)=ax^2+(a-b)x+1 g ( x ) = a x 2 + ( a − b ) x + 1 habis dibagi
x + 1 x+1 x + 1 berarti
g ( − 1 ) = 0 a ( − 1 ) 2 + ( a − b ) ( − 1 ) + 1 = 0 a − a + b + 1 = 0 b = − 1 \begin{aligned}
g(-1)&=0\\
a(-1)^2+(a-b)(-1)+1&=0\\
a-a+b+1&=0\\
b&=-1
\end{aligned}
g ( − 1 ) a ( − 1 ) 2 + ( a − b ) ( − 1 ) + 1 a − a + b + 1 b = 0 = 0 = 0 = − 1
g ( x ) = a x 2 + ( a − b ) x + 1 = a x 2 + ( a − ( − 1 ) ) x + 1 = a x 2 + ( a + 1 ) x + 1 \begin{aligned}
g(x)&=ax^2+(a-b)x+1\\
&=ax^2+(a-(-1))x+1\\
&=ax^2+(a+1)x+1
\end{aligned} g ( x ) = a x 2 + ( a − b ) x + 1 = a x 2 + ( a − ( − 1 ) ) x + 1 = a x 2 + ( a + 1 ) x + 1 lim x → − 1 a x 2 + ( a + 1 ) x + 1 x 2 + 3 x + 2 = 4 lim x → − 1 2 a x + a + 1 2 x + 3 = 4 2 a ( − 1 ) + a + 1 2 ( − 1 ) + 3 = 4 − 2 a + a + 1 1 = 4 − a + 1 = 4 a = − 3 \begin{aligned}
\displaystyle\lim_{x\to-1}\dfrac{ax^2+(a+1)x+1}{x^2+3x+2}&=4\\[8pt]
\displaystyle\lim_{x\to-1}\dfrac{2ax+a+1}{2x+3}&=4\\[8pt]
\dfrac{2a(-1)+a+1}{2(-1)+3}&=4\\[8pt]
\dfrac{-2a+a+1}{1}&=4\\[8pt]
-a+1&=4\\
a&=-3
\end{aligned} x → − 1 lim x 2 + 3 x + 2 a x 2 + ( a + 1 ) x + 1 x → − 1 lim 2 x + 3 2 a x + a + 1 2 ( − 1 ) + 3 2 a ( − 1 ) + a + 1 1 − 2 a + a + 1 − a + 1 a = 4 = 4 = 4 = 4 = 4 = − 3
2 a − b = 2 ( − 3 ) − ( − 1 ) = − 6 + 1 = − 5 \begin{aligned}
2a-b&=2(-3)-(-1)\\
&=-6+1\\
&=-5
\end{aligned} 2 a − b = 2 ( − 3 ) − ( − 1 ) = − 6 + 1 = − 5 No. 9 Nilai
lim x → a ( 5 f ( x ) − 3 g ( x ) ) = 11 \displaystyle\lim_{x\to a}\left(5f(x)-3g(x)\right)= 11 x → a lim ( 5 f ( x ) − 3 g ( x ) ) = 1 1 dan
lim x → a ( 2 f ( x ) + 3 g ( x ) ) = 17 \displaystyle\lim_{x\to a}\left(2f(x)+3g(x)\right)= 17 x → a lim ( 2 f ( x ) + 3 g ( x ) ) = 1 7 , maka nilai
lim x → a ( 4 f ( x ) ) = \displaystyle\lim_{x\to a}\left(4f(x)\right)= x → a lim ( 4 f ( x ) ) =
lim x → a ( 5 f ( x ) − 3 g ( x ) ) = 11 5 lim x → a f ( x ) − 3 lim x → a g ( x ) = 11 \begin{aligned}
\displaystyle\lim_{x\to a}\left(5f(x)-3g(x)\right)&= 11\\
5\displaystyle\lim_{x\to a}f(x)-3\displaystyle\lim_{x\to a}g(x)&=11
\end{aligned} x → a lim ( 5 f ( x ) − 3 g ( x ) ) 5 x → a lim f ( x ) − 3 x → a lim g ( x ) = 1 1 = 1 1
lim x → a ( 2 f ( x ) + 3 g ( x ) ) = 17 2 lim x → a f ( x ) + 3 lim x → a g ( x ) = 17 \begin{aligned}
\displaystyle\lim_{x\to a}\left(2f(x)+3g(x)\right)&= 17\\
2\displaystyle\lim_{x\to a}f(x)+3\displaystyle\lim_{x\to a}g(x)&=17
\end{aligned} x → a lim ( 2 f ( x ) + 3 g ( x ) ) 2 x → a lim f ( x ) + 3 x → a lim g ( x ) = 1 7 = 1 7 5 lim x → a f ( x ) − 3 lim x → a g ( x ) = 11 2 lim x → a f ( x ) + 3 lim x → a g ( x ) = 17 + 7 lim x → a f ( x ) = 28 lim x → a f ( x ) = 4 lim x → a ( 4 f ( x ) ) = 16 \begin{aligned}
5\displaystyle\lim_{x\to a}f(x)-3\displaystyle\lim_{x\to a}g(x)&=11\\
2\displaystyle\lim_{x\to a}f(x)+3\displaystyle\lim_{x\to a}g(x)&=17\qquad\color{red}{+}\\\hline
7\displaystyle\lim_{x\to a}f(x)&=28\\
\displaystyle\lim_{x\to a}f(x)&=4\\
\displaystyle\lim_{x\to a}\left(4f(x)\right)&=\boxed{\boxed{16}}
\end{aligned} 5 x → a lim f ( x ) − 3 x → a lim g ( x ) 2 x → a lim f ( x ) + 3 x → a lim g ( x ) 7 x → a lim f ( x ) x → a lim f ( x ) x → a lim ( 4 f ( x ) ) = 1 1 = 1 7 + = 2 8 = 4 = 1 6 No. 10 Diketahui
lim x → 3 f ( x ) ⋅ g ( x ) − 5 g ( x ) + f ( x ) − 5 ( f ( x ) − 5 ) ( x − 3 ) = 0 {\displaystyle\lim_{x\to3}\dfrac{f(x)\cdot g(x)-5g(x)+f(x)-5}{\left(f(x)-5\right)(x-3)}=0} x → 3 lim ( f ( x ) − 5 ) ( x − 3 ) f ( x ) ⋅ g ( x ) − 5 g ( x ) + f ( x ) − 5 = 0 . Nilai
g ′ ( 3 ) g'(3) g ′ ( 3 ) adalah
lim x → 3 f ( x ) ⋅ g ( x ) − 5 g ( x ) + f ( x ) − 5 ( f ( x ) − 5 ) ( x − 3 ) = 0 lim x → 3 ( f ( x ) − 5 ) ( g ( x ) + 1 ) ( f ( x ) − 5 ) ( x − 3 ) = 0 lim x → 3 g ( x ) + 1 x − 3 = 0 lim x → 3 g ′ ( x ) 1 = 0 l’hopital lim x → 3 g ′ ( x ) = 0 g ′ ( 3 ) = 0 \begin{aligned}
\displaystyle\lim_{x\to3}\dfrac{f(x)\cdot g(x)-5g(x)+f(x)-5}{\left(f(x)-5\right)(x-3)}&=0\\[8pt]
\displaystyle\lim_{x\to3}\dfrac{\left(f(x)-5\right)\left(g(x)+1\right)}{\left(f(x)-5\right)(x-3)}&=0\\[8pt]
\displaystyle\lim_{x\to3}\dfrac{g(x)+1}{x-3}&=0\\[8pt]
\displaystyle\lim_{x\to3}\dfrac{g'(x)}1&=0&\qquad\color{red}{\text{l'hopital}}\\[8pt]
\displaystyle\lim_{x\to3}g'(x)&=0\\
g'(3)&=0
\end{aligned} x → 3 lim ( f ( x ) − 5 ) ( x − 3 ) f ( x ) ⋅ g ( x ) − 5 g ( x ) + f ( x ) − 5 x → 3 lim ( f ( x ) − 5 ) ( x − 3 ) ( f ( x ) − 5 ) ( g ( x ) + 1 ) x → 3 lim x − 3 g ( x ) + 1 x → 3 lim 1 g ′ ( x ) x → 3 lim g ′ ( x ) g ′ ( 3 ) = 0 = 0 = 0 = 0 = 0 = 0 l’hopital
0 Response to "SBMPTN Zone : Limit"
Post a Comment