SBMPTN Zone : Limit

Berikut ini adalah kumpulan soal dan pembahasan mengenai limit tingkat SBMPTN. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Terima kasih.


No. 1

Diketahui f(x)=x2+ax+bf(x)=x^2+ax+b dengan f(3)=1f(3)=1. Jika limx3x3f(x)f(3)=12\displaystyle\lim_{x\to3}\dfrac{x-3}{f(x)-f(3)}=\dfrac12 maka a+b=a+b= ....
  1. 88
  2. 00
  3. 2-2
  1. 4-4
  2. 8-8
f(x)=2x+af'(x)=2x+a

limx3x3f(x)f(3)=12limx31f(x)=121f(3)=1212(3)+a=1216+a=126+a=2a=4\begin{aligned} \displaystyle\lim_{x\to3}\dfrac{x-3}{f(x)-f(3)}&=\dfrac12\\ \displaystyle\lim_{x\to3}\dfrac1{f'(x)}&=\dfrac12\\ \dfrac1{f'(3)}&=\dfrac12\\ \dfrac1{2(3)+a}&=\dfrac12\\ \dfrac1{6+a}&=\dfrac12\\ 6+a&=2\\ a&=-4 \end{aligned}

f(x)=x2+(4)x+b=x24x+b\begin{aligned} f(x)&=x^2+(-4)x+b\\ &=x^2-4x+b \end{aligned}

f(3)=1324(3)+b=1912+b=13+b=1b=4\begin{aligned} f(3)&=1\\ 3^2-4(3)+b&=1\\ 9-12+b&=1\\ -3+b&=1\\ b&=4 \end{aligned}

a+b=4+4=0\begin{aligned} a+b&=-4+4\\ &=0 \end{aligned}

No. 2

Diketahui suku banyak f(x)=ax2(a+b)x3{f(x)=ax^2-(a+b)x-3} habis dibagi x+1{x+1}. Jika limx1f(x)x2x2=2\displaystyle\lim_{x\to-1}\dfrac{f(x)}{x^2-x-2}=2, maka nilai a+ba+b adalah ....
  1. 1-1
  2. 22
  3. 55
  1. 44
  2. 00
habis dibagi x+1x+1 artinya f(1)=0f(-1)=0

f(1)=0a(1)2(a+b)(1)3=0a+a+b3=02a+b=3\begin{aligned} f(-1)&=0\\ a(-1)^2-(a+b)(-1)-3&=0\\ a+a+b-3&=0\\ 2a+b&=3 \end{aligned}

f(x)=2axabf'(x)=2ax-a-b

limx1f(x)x2x2=2limx1f(x)2x1=2f(1)2(1)1=22a(1)ab3=22aab=63a+b=6\begin{aligned} \displaystyle\lim_{x\to-1}\dfrac{f(x)}{x^2-x-2}&=2\\ \displaystyle\lim_{x\to-1}\dfrac{f'(x)}{2x-1}&=2\\ \dfrac{f'(-1)}{2(-1)-1}&=2\\ \dfrac{2a(-1)-a-b}{-3}&=2\\ -2a-a-b&=-6\\ 3a+b&=6 \end{aligned}

3a+b=62a+b=3a=3\begin{aligned} 3a+b&=6\\ 2a+b&=3\qquad-\\\hline a&=3 \end{aligned}

2a+b=32(3)+b=3b=3\begin{aligned} 2a+b&=3\\ 2(3)+b&=3\\ b&=-3 \end{aligned}

a+b=3+(3)=0\begin{aligned} a+b&=3+(-3)\\ &=0 \end{aligned}

No. 3

limx1(11x2xx3)\displaystyle\lim_{x\to1}\left(\dfrac1{1-x}-\dfrac2{x-x^3}\right) =



UM UGM '05 Kode 621
limx1(11x2xx3)=limx1(11x2x(1+x)(1x))=limx1(x(1+x)x(1+x)(1x)2x(1+x)(1x))=limx1x+x22x(1+x)(1x)=limx1(x+2)(x1)x(1+x)(1x)=limx1(x+2)(1x)x(1+x)(1x)=(1+2)1(1+1)=32=32\begin{aligned} \displaystyle\lim_{x\to1}\left(\dfrac1{1-x}-\dfrac2{x-x^3}\right)&=\displaystyle\lim_{x\to1}\left(\dfrac1{1-x}-\dfrac2{x(1+x)(1-x)}\right)\\[8pt] &=\displaystyle\lim_{x\to1}\left(\dfrac{x(1+x)}{x(1+x)(1-x)}-\dfrac2{x(1+x)(1-x)}\right)\\[8pt] &=\displaystyle\lim_{x\to1}\dfrac{x+x^2-2}{x(1+x)(1-x)}\\[8pt] &=\displaystyle\lim_{x\to1}\dfrac{(x+2)(x-1)}{x(1+x)(1-x)}\\[8pt] &=\displaystyle\lim_{x\to1}\dfrac{-(x+2)(1-x)}{x(1+x)(1-x)}\\[8pt] &=\dfrac{-(1+2)}{1(1+1)}\\[8pt] &=\dfrac{-3}2\\ &=\boxed{\boxed{-\dfrac32}} \end{aligned}

No. 12

limx5x+2x+1x2x+1=\displaystyle\lim_{x\to5}\dfrac{\sqrt{x+2\sqrt{x+1}}}{\sqrt{x-2\sqrt{x+1}}}=
  1. 3+2\sqrt3+\sqrt2
  2. 5265-2\sqrt6
  3. 262\sqrt6
  1. 55
  2. 5+265+2\sqrt6
GRUP WHATSAPP
limx5x+2x+1x2x+1=limx5x+2x+1x2x+1x+2x+1x+2x+1=limx5x+2x+1x24(x+1)=5+25+1524(5+1)=5+262524=5+261=5+26\begin{aligned} \displaystyle\lim_{x\to5}\dfrac{\sqrt{x+2\sqrt{x+1}}}{\sqrt{x-2\sqrt{x+1}}}&=\displaystyle\lim_{x\to5}\dfrac{\sqrt{x+2\sqrt{x+1}}}{\sqrt{x-2\sqrt{x+1}}}\cdot\dfrac{\sqrt{x+2\sqrt{x+1}}}{\sqrt{x+2\sqrt{x+1}}}\\[8pt] &=\displaystyle\lim_{x\to5}\dfrac{x+2\sqrt{x+1}}{\sqrt{x^2-4(x+1)}}\\[8pt] &=\dfrac{5+2\sqrt{5+1}}{\sqrt{5^2-4(5+1)}}\\[8pt] &=\dfrac{5+2\sqrt6}{\sqrt{25-24}}\\[8pt] &=\dfrac{5+2\sqrt6}{\sqrt1}\\ &=\boxed{\boxed{5+2\sqrt6}} \end{aligned}

13

Jika f(x)=ax+bf(x)=ax+b dan limx4(3xf(x)x4)=24\displaystyle\lim_{x\to4}\left(\dfrac{3x\cdot f(x)}{x-4}\right)=24, maka nilai f(5)=f(5)=
  1. 00
  2. 11
  3. 22
  1. 33
  2. 44

CARA 1

3(4)f(4)=012(4a+b)=04a+b=0\begin{aligned} 3(4)\cdot f(4)&=0\\ 12(4a+b)&=0\\ 4a+b&=0 \end{aligned}

Gunakan aturan L'hopital
limx4(3xf(x)x4)=24limx4(3f(x)+3xf(x)1)=243f(4)+3(4)f(4)=243(4a+b)+12(a)=243(0)+12a=2412a=24a=2\begin{aligned} \displaystyle\lim_{x\to4}\left(\dfrac{3x\cdot f(x)}{x-4}\right)&=24\\[8pt] \displaystyle\lim_{x\to4}\left(\dfrac{3f(x)+3x\cdot f'(x)}1\right)&=24\\[8pt] 3f(4)+3(4)f'(4)&=24\\ 3(4a+b)+12(a)&=24\\ 3(0)+12a&=24\\ 12a&=24\\ a&=2 \end{aligned}

4a+b=04(2)+b=08+b=0b=8\begin{aligned} 4a+b&=0\\ 4(2)+b&=0\\ 8+b&=0\\ b&=-8 \end{aligned}

f(x)=2x8f(x)=2x-8

f(5)=2(5)8=108=2\begin{aligned} f(5)&=2(5)-8\\ &=10-8\\ &=\boxed{\boxed{2}} \end{aligned}

CARA 2

f(x)f(x) adalah fungsi linier, dan x4x-4 harus menjadi salah satu faktornya, sehingga bisa kita tulis f(x)=p(x4)f(x)=p(x-4)
limx4(3xf(x)x4)=24limx4(3xp(x4)x4)=24limx43xp=243(4)p=2412p=24p=2\begin{aligned} \displaystyle\lim_{x\to4}\left(\dfrac{3x\cdot f(x)}{x-4}\right)&=24\\[8pt] \displaystyle\lim_{x\to4}\left(\dfrac{3x\cdot p(x-4)}{x-4}\right)&=24\\[8pt] \displaystyle\lim_{x\to4}3xp&=24\\ 3(4)p&=24\\ 12p&=24\\ p&=2 \end{aligned}

f(x)=2(x4)f(x)=2(x-4)

f(5)=2(54)=2(1)=2\begin{aligned} f(5)&=2(5-4)\\ &=2(1)\\ &=\boxed{\boxed{2}} \end{aligned}

No. 6

Nilai limxa(5f(x)3g(x))=11\displaystyle\lim_{x\to a}\left(5f(x)-3g(x)\right)=11 dan limxa(2f(x)+3g(x))=17\displaystyle\lim_{x\to a}\left(2f(x)+3g(x)\right)=17, maka nilai limxa(f(x)g(x))=\displaystyle\lim_{x\to a}\left(f(x)\cdot g(x)\right)=
  1. 2121
  2. 1616
  3. 1515
  1. 1414
  2. 1212
limxa(5f(x)3g(x))=11limxa(2f(x)+3g(x))=17+limxa7f(x)=28limxaf(x)=4\begin{aligned} \displaystyle\lim_{x\to a}\left(5f(x)-3g(x)\right)&=11\\ \displaystyle\lim_{x\to a}\left(2f(x)+3g(x)\right)&=17\qquad&\color{red}{+}\\\hline \displaystyle\lim_{x\to a}7f(x)&=28\\ \displaystyle\lim_{x\to a}f(x)&=4 \end{aligned}

limxa(5f(x)3g(x))=115(4)limxa3g(x)=1120limxa3g(x)=11limxa3g(x)=9limxa3g(x)=9limxag(x)=3\begin{aligned} \displaystyle\lim_{x\to a}\left(5f(x)-3g(x)\right)&=11\\ 5(4)-\displaystyle\lim_{x\to a}3g(x)&=11\\ 20-\displaystyle\lim_{x\to a}3g(x)&=11\\ -\displaystyle\lim_{x\to a}3g(x)&=-9\\ \displaystyle\lim_{x\to a}3g(x)&=9\\ \displaystyle\lim_{x\to a}g(x)&=3 \end{aligned}

limxa(f(x)g(x))=43=12\begin{aligned} \displaystyle\lim_{x\to a}\left(f(x)\cdot g(x)\right)&=4\cdot3\\ &=\boxed{\boxed{12}} \end{aligned}

No. 7

Jika limx1ax4+b2x1=M\displaystyle\lim_{x\to1}\dfrac{\sqrt{ax^4+b}-2}{x-1}=M maka limx1ax4+b2xx2+2x3=\displaystyle\lim_{x\to1}\dfrac{\sqrt{ax^4+b}-2x}{x^2+2x-3}= ....
  1. 2M12M-1
  2. 12(M1)\dfrac12(M-1)
  3. 14(M2)\dfrac14(M-2)
  1. 2M+22M+2
  2. 4M24M-2

CARA 1

limx1ax4+b2x1=Mlimx14ax32ax4+b1=Mlimx14ax32ax4+b=ML’hopital\begin{aligned} \displaystyle\lim_{x\to1}\dfrac{\sqrt{ax^4+b}-2}{x-1}&=M\\[8pt] \displaystyle\lim_{x\to1}\dfrac{\dfrac{4ax^3}{2\sqrt{ax^4+b}}}1&=M\\[8pt] \displaystyle\lim_{x\to1}\dfrac{4ax^3}{2\sqrt{ax^4+b}}&=M\qquad\color{red}{\text{L'hopital}} \end{aligned}

limx1ax4+b2xx2+2x3=limx14ax32ax4+b22x+2L’hopital=M22(1)+2=M24=14(M2)\begin{aligned} \displaystyle\lim_{x\to1}\dfrac{\sqrt{ax^4+b}-2x}{x^2+2x-3}&=\displaystyle\lim_{x\to1}\dfrac{\dfrac{4ax^3}{2\sqrt{ax^4+b}}-2}{2x+2}\qquad\color{red}{\text{L'hopital}}\\[8pt] &=\dfrac{M-2}{2(1)+2}\\[8pt] &=\dfrac{M-2}4\\ &=\boxed{\boxed{\dfrac14(M-2)}} \end{aligned}

CARA 2

limx1ax4+b2xx2+2x3=limx1ax4+b22x+2(x1)(x+3)=limx1ax4+b22(x1)(x1)(x+3)=limx1ax4+b2x12x+3=M21+3=M24=14(M2)\begin{aligned} \displaystyle\lim_{x\to1}\dfrac{\sqrt{ax^4+b}-2x}{x^2+2x-3}&=\displaystyle\lim_{x\to1}\dfrac{\sqrt{ax^4+b}-2-2x+2}{(x-1)(x+3)}\\[8pt] &=\displaystyle\lim_{x\to1}\dfrac{\sqrt{ax^4+b}-2-2(x-1)}{(x-1)(x+3)}\\[8pt] &=\displaystyle\lim_{x\to1}\dfrac{\dfrac{\sqrt{ax^4+b}-2}{x-1}-2}{x+3}\\[8pt] &=\dfrac{M-2}{1+3}\\[8pt] &=\dfrac{M-2}4\\ &=\boxed{\boxed{\dfrac14(M-2)}} \end{aligned}

No. 8

Diketahui suku banyak g(x)=ax2+(ab)x+1g(x)=ax^2+(a-b)x+1 habis dibagi x+1x+1. Jika limx1g(x)x2+3x+2=4\displaystyle\lim_{x\to-1}\dfrac{g(x)}{x^2+3x+2}=4, maka nilai 2ab2a-b adalah
  1. 33
  2. 44
  3. 5-5
  1. 6-6
  2. 7-7
g(x)=ax2+(ab)x+1g(x)=ax^2+(a-b)x+1 habis dibagi x+1x+1 berarti
g(1)=0a(1)2+(ab)(1)+1=0aa+b+1=0b=1\begin{aligned} g(-1)&=0\\ a(-1)^2+(a-b)(-1)+1&=0\\ a-a+b+1&=0\\ b&=-1 \end{aligned}

g(x)=ax2+(ab)x+1=ax2+(a(1))x+1=ax2+(a+1)x+1\begin{aligned} g(x)&=ax^2+(a-b)x+1\\ &=ax^2+(a-(-1))x+1\\ &=ax^2+(a+1)x+1 \end{aligned}
limx1ax2+(a+1)x+1x2+3x+2=4limx12ax+a+12x+3=42a(1)+a+12(1)+3=42a+a+11=4a+1=4a=3\begin{aligned} \displaystyle\lim_{x\to-1}\dfrac{ax^2+(a+1)x+1}{x^2+3x+2}&=4\\[8pt] \displaystyle\lim_{x\to-1}\dfrac{2ax+a+1}{2x+3}&=4\\[8pt] \dfrac{2a(-1)+a+1}{2(-1)+3}&=4\\[8pt] \dfrac{-2a+a+1}{1}&=4\\[8pt] -a+1&=4\\ a&=-3 \end{aligned}

2ab=2(3)(1)=6+1=5\begin{aligned} 2a-b&=2(-3)-(-1)\\ &=-6+1\\ &=-5 \end{aligned}

No. 9

Nilai limxa(5f(x)3g(x))=11\displaystyle\lim_{x\to a}\left(5f(x)-3g(x)\right)= 11 dan limxa(2f(x)+3g(x))=17\displaystyle\lim_{x\to a}\left(2f(x)+3g(x)\right)= 17, maka nilai limxa(4f(x))=\displaystyle\lim_{x\to a}\left(4f(x)\right)=
  1. 1616
  2. 1818
  3. 2020
  1. 2222
  2. 2424
limxa(5f(x)3g(x))=115limxaf(x)3limxag(x)=11\begin{aligned} \displaystyle\lim_{x\to a}\left(5f(x)-3g(x)\right)&= 11\\ 5\displaystyle\lim_{x\to a}f(x)-3\displaystyle\lim_{x\to a}g(x)&=11 \end{aligned}

limxa(2f(x)+3g(x))=172limxaf(x)+3limxag(x)=17\begin{aligned} \displaystyle\lim_{x\to a}\left(2f(x)+3g(x)\right)&= 17\\ 2\displaystyle\lim_{x\to a}f(x)+3\displaystyle\lim_{x\to a}g(x)&=17 \end{aligned}
5limxaf(x)3limxag(x)=112limxaf(x)+3limxag(x)=17+7limxaf(x)=28limxaf(x)=4limxa(4f(x))=16\begin{aligned} 5\displaystyle\lim_{x\to a}f(x)-3\displaystyle\lim_{x\to a}g(x)&=11\\ 2\displaystyle\lim_{x\to a}f(x)+3\displaystyle\lim_{x\to a}g(x)&=17\qquad\color{red}{+}\\\hline 7\displaystyle\lim_{x\to a}f(x)&=28\\ \displaystyle\lim_{x\to a}f(x)&=4\\ \displaystyle\lim_{x\to a}\left(4f(x)\right)&=\boxed{\boxed{16}} \end{aligned}

No. 10

Diketahui limx3f(x)g(x)5g(x)+f(x)5(f(x)5)(x3)=0{\displaystyle\lim_{x\to3}\dfrac{f(x)\cdot g(x)-5g(x)+f(x)-5}{\left(f(x)-5\right)(x-3)}=0}. Nilai g(3)g'(3) adalah
  1. 1-1
  2. 11
  3. 3-3
  1. 33
  2. 00
limx3f(x)g(x)5g(x)+f(x)5(f(x)5)(x3)=0limx3(f(x)5)(g(x)+1)(f(x)5)(x3)=0limx3g(x)+1x3=0limx3g(x)1=0l’hopitallimx3g(x)=0g(3)=0\begin{aligned} \displaystyle\lim_{x\to3}\dfrac{f(x)\cdot g(x)-5g(x)+f(x)-5}{\left(f(x)-5\right)(x-3)}&=0\\[8pt] \displaystyle\lim_{x\to3}\dfrac{\left(f(x)-5\right)\left(g(x)+1\right)}{\left(f(x)-5\right)(x-3)}&=0\\[8pt] \displaystyle\lim_{x\to3}\dfrac{g(x)+1}{x-3}&=0\\[8pt] \displaystyle\lim_{x\to3}\dfrac{g'(x)}1&=0&\qquad\color{red}{\text{l'hopital}}\\[8pt] \displaystyle\lim_{x\to3}g'(x)&=0\\ g'(3)&=0 \end{aligned}

Related Posts

0 Response to "SBMPTN Zone : Limit"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel