Berikut ini adalah kumpulan soal mengenai integral tentu tingkat dasar. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Terima kasih.
No. 1
Jika
0∫3f(x) dx=−5 dan
0∫7f(x) dx=8 maka
3∫7f(x) dx= ....
∫07f(x) dx=∫03f(x) dx+∫37f(x) dx8=−5+∫37f(x) dx∫37f(x) dx=8+5=13
No. 2
Jika
0∫4f(x) dx=5 dan
4∫10f(x) dx=10 maka
20∫10f(x) dx= ....
∫010f(x) dx=∫04f(x) dx+∫410f(x) dx=5+10=152∫010f(x) dx=2(15)=30
No. 3
Jika
0∫22f(x) dx=4 dan
4∫23f(x) dx=12 maka nilai
0∫4f(x) dx=
∫022f(x) dx=42∫02f(x) dx=4∫02f(x) dx=2
∫423f(x) dx=123∫42f(x) dx=12∫42f(x) dx=4∫24f(x) dx=−4
∫04f(x) dx=∫02f(x) dx+∫24f(x) dx=2+(−4)=−2
No. 4
Nilai dari
1∫4(2x−x3−1)dx adalah
- 31
- 32
- 1
∫14(2x−3x−1)dx=∫14(2x12−3x12−1)dx=∫14(2x12−3x−12−1)dx=[2⋅23x32−3⋅2x12−x]14=[43xx−6x−x]14=[43(4)4−64−4]−[43(1)1−61−1]=[163(2)−6(2)−4]−[43(1)−6(1)−1]=[323−12−4]−[43−6−1]=−163−(−173)=−163+173=13
No. 5
Nilai dari
−1∫1(x2+2x−3) dx−−1∫1(x2−3x+4) dx=
∫−11(x2+2x−3) dx−∫−11(x2−3x+4) dx=∫−11(x2+2x−3−(x2−3x+4)) dx=∫−11(x2+2x−3−x2+3x−4) dx=∫−11(5x−7) dx=[52x2−7x]−11=[52(1)2−7(1)]−[52(−1)2−7(−1)]=[52−7]−[52+7]=52−7−52−7=−14
No. 6
−1∫2x(x2+1) dx=
Misal
u=x2+1
du=2x dxx dx=12du
x=−1→u=(−1)2+1=2,
x=2→u=22+1=5,
∫−12x(x2+1) dx=12∫25u du=12[12u2]25=12[(12(5)2)−(12(2)2)]=12[252−42]=12[212]=214
No. 7
Jika
1∫p3x(x+32) dx=78 maka nilai
3p=
∫1p3x(x+23) dx=78∫1p(3x2+2x) dx=78[x3+x2]1p=78[p3+p2]−[13+12]=78p3+p2−2=78p3+p2−80=0(p−4)(p2+5p+20)=0p=43p=3(4)=12
No. 8
Nilai dari
2∫3(x2+10x+25) dx adalah
- 5631
- 5632
- 5731
- 5732
- 5831
∫23(x2+10x+25) dx=[13x3+5x2+25x]23=[13(3)3+5(3)2+25(3)]−[13(2)3+5(2)2+25(2)]=[13(27)+5(9)+75]−[13(8)+5(4)+50]=[9+45+75]−[83+20+50]=129−83−70=59−223=5613
No. 9
21∫1(sinπx+32x−1) dx=
- 4π3π+4
- 8π3π+8
- 4π3π−4
- 8π3π−8
- 43+π
∫121(sinπx+2x−13) dx=∫121(sinπx+(2x−1)13) dx=[−1πcosπx+12⋅34(2x−1)43]121=[−1πcosπx+38(2x−1)2x−13]121=[−1πcosπ(1)+38(2(1)−1)2(1)−13]−[−1πcosπ(12)+38(2(12)−1)2(12)−13]=[−1πcosπ+38(1)13]−[−1πcosπ2+38(0)03]=[−1π(−1)+38]−[−1π(0)+0]=[1π+38]−0=8+3π8π=3π+88π
No. 10
2∫6x dx= ....
∫916x dx=∫916x12 dx=23x32∣916=23xx∣916=23(16)16−23(9)9=323(4)−6(3)=1283−18=743
0 Response to "Exercise Zone : Integral Tentu (Definite Integral)"
Post a Comment