Exercise Zone : Integral Tentu (Definite Integral)

Berikut ini adalah kumpulan soal mengenai integral tentu tingkat dasar. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Terima kasih.


No. 1

Jika 03f(x) dx=5\displaystyle\intop_0^3f(x)\ dx=-5 dan 07f(x) dx=8\displaystyle\intop_0^7f(x)\ dx=8 maka 37f(x) dx=\displaystyle\intop_3^7f(x)\ dx= ....
  1. 33
  2. 1313
  3. 8-8
  1. 55
  2. 1212
07f(x) dx=03f(x) dx+37f(x) dx8=5+37f(x) dx37f(x) dx=8+5=13∫07f(x) dx=∫03f(x) dx+∫37f(x) dx8=−5+∫37f(x) dx∫37f(x) dx=8+5=13

No. 2

Jika 04f(x) dx=5\displaystyle\intop_0^4f(x)\ dx=5 dan 410f(x) dx=10\displaystyle\intop_4^{10}f(x)\ dx=10 maka 2010f(x) dx=2\displaystyle\intop_0^{10}f(x)\ dx= ....
  1. 3030
  2. 3232
  3. 3434
  1. 3636
  2. 3838
010f(x) dx=04f(x) dx+410f(x) dx=5+10=152010f(x) dx=2(15)=30∫010f(x) dx=∫04f(x) dx+∫410f(x) dx=5+10=152∫010f(x) dx=2(15)=30

No. 3

Jika 022f(x) dx=4\displaystyle\intop_0^22f(x)\ dx=4 dan 423f(x) dx=12\displaystyle\intop_4^23f(x)\ dx=12 maka nilai 04f(x) dx=\displaystyle\intop_0^4f(x)\ dx=
  1. 2-2
  2. 3-3
  3. 4-4
  1. 5-5
  2. 6-6
022f(x) dx=4202f(x) dx=402f(x) dx=2∫022f(x) dx=42∫02f(x) dx=4∫02f(x) dx=2

423f(x) dx=12342f(x) dx=1242f(x) dx=424f(x) dx=4∫423f(x) dx=123∫42f(x) dx=12∫42f(x) dx=4∫24f(x) dx=−4

04f(x) dx=02f(x) dx+24f(x) dx=2+(4)=2∫04f(x) dx=∫02f(x) dx+∫24f(x) dx=2+(−4)=−2

No. 4

Nilai dari 14(2x3x1)dx\displaystyle\intop_1^4\left(2\sqrt{x}-\dfrac3{\sqrt{x}}-1\right)dx adalah
  1. 13\dfrac13
  2. 23\dfrac23
  3. 11
  1. 12\dfrac12
  2. 33
14(2x3x1)dx=14(2x123x121)dx=14(2x123x121)dx=[223x3232x12x]14=[43xx6xx]14=[43(4)4644][43(1)1611]=[163(2)6(2)4][43(1)6(1)1]=[323124][4361]=163(173)=163+173=13∫14(2x−3x−1)dx=∫14(2x12−3x12−1)dx=∫14(2x12−3x−12−1)dx=[2⋅23x32−3⋅2x12−x]14=[43xx−6x−x]14=[43(4)4−64−4]−[43(1)1−61−1]=[163(2)−6(2)−4]−[43(1)−6(1)−1]=[323−12−4]−[43−6−1]=−163−(−173)=−163+173=13

No. 5

Nilai dari 11(x2+2x3) dx11(x23x+4) dx=\displaystyle\intop_{-1}^1\left(x^2+2x-3\right)\ dx-\displaystyle\intop_{-1}^1\left(x^2-3x+4\right)\ dx=
  1. 00
  2. 77
  3. 1414
  1. 7-7
  2. 14-14
11(x2+2x3) dx11(x23x+4) dx=11(x2+2x3(x23x+4)) dx=11(x2+2x3x2+3x4) dx=11(5x7) dx=[52x27x]11=[52(1)27(1)][52(1)27(1)]=[527][52+7]=527527=14∫−11(x2+2x−3) dx−∫−11(x2−3x+4) dx=∫−11(x2+2x−3−(x2−3x+4)) dx=∫−11(x2+2x−3−x2+3x−4) dx=∫−11(5x−7) dx=[52x2−7x]−11=[52(1)2−7(1)]−[52(−1)2−7(−1)]=[52−7]−[52+7]=52−7−52−7=−14

No. 6

12x(x2+1) dx=\displaystyle\intop_{-1}^2x\left(x^2+1\right)\ dx=
Misal u=x2+1u=x^2+1
du=2x dxx dx=12dudu=2x dxx dx=12du

x=1u=(1)2+1=2x=-1\rightarrow u=(-1)^2+1=2,
x=2u=22+1=5x=2\rightarrow u=2^2+1=5,

12x(x2+1) dx=1225u du=12[12u2]25=12[(12(5)2)(12(2)2)]=12[25242]=12[212]=214∫−12x(x2+1) dx=12∫25u du=12[12u2]25=12[(12(5)2)−(12(2)2)]=12[252−42]=12[212]=214

No. 7

Jika 1p3x(x+23) dx=78\displaystyle\intop_1^p3x\left(x+\dfrac23\right)\ dx=78 maka nilai 3p=3p=
  1. 1818
  2. 1212
  3. 1515
  1. 99
  2. 66
1p3x(x+23) dx=781p(3x2+2x) dx=78[x3+x2]1p=78[p3+p2][13+12]=78p3+p22=78p3+p280=0(p4)(p2+5p+20)=0p=43p=3(4)=12∫1p3x(x+23) dx=78∫1p(3x2+2x) dx=78[x3+x2]1p=78[p3+p2]−[13+12]=78p3+p2−2=78p3+p2−80=0(p−4)(p2+5p+20)=0p=43p=3(4)=12

No. 8

Nilai dari 23(x2+10x+25) dx\displaystyle\intop_2^3\left(x^2+10x+25\right)\ dx adalah
  1. 561356\dfrac13
  2. 562356\dfrac23
  3. 571357\dfrac13
  1. 572357\dfrac23
  2. 581358\dfrac13
23(x2+10x+25) dx=[13x3+5x2+25x]23=[13(3)3+5(3)2+25(3)][13(2)3+5(2)2+25(2)]=[13(27)+5(9)+75][13(8)+5(4)+50]=[9+45+75][83+20+50]=1298370=59223=5613∫23(x2+10x+25) dx=[13x3+5x2+25x]23=[13(3)3+5(3)2+25(3)]−[13(2)3+5(2)2+25(2)]=[13(27)+5(9)+75]−[13(8)+5(4)+50]=[9+45+75]−[83+20+50]=129−83−70=59−223=5613

No. 9

121(sinπx+2x13) dx=\displaystyle\intop_{\frac12}^1\left(\sin\pi x+\sqrt[3]{2x-1}\right)\ dx=
  1. 3π+44π\dfrac{3\pi+4}{4\pi}
  2. 3π+88π\dfrac{3\pi+8}{8\pi}
  3. 3π44π\dfrac{3\pi-4}{4\pi}
  1. 3π88π\dfrac{3\pi-8}{8\pi}
  2. 34+π\dfrac34+\pi
121(sinπx+2x13) dx=121(sinπx+(2x1)13) dx=[1πcosπx+1234(2x1)43]121=[1πcosπx+38(2x1)2x13]121=[1πcosπ(1)+38(2(1)1)2(1)13][1πcosπ(12)+38(2(12)1)2(12)13]=[1πcosπ+38(1)13][1πcosπ2+38(0)03]=[1π(1)+38][1π(0)+0]=[1π+38]0=8+3π8π=3π+88π∫121(sin⁡πx+2x−13) dx=∫121(sin⁡πx+(2x−1)13) dx=[−1πcos⁡πx+12⋅34(2x−1)43]121=[−1πcos⁡πx+38(2x−1)2x−13]121=[−1πcos⁡π(1)+38(2(1)−1)2(1)−13]−[−1πcos⁡π(12)+38(2(12)−1)2(12)−13]=[−1πcos⁡π+38(1)13]−[−1πcos⁡π2+38(0)03]=[−1π(−1)+38]−[−1π(0)+0]=[1π+38]−0=8+3π8π=3π+88π

No. 10

26x dx=\displaystyle\intop_2^6\sqrt{x}\ dx= ....
916x dx=916x12 dx=23x32916=23xx916=23(16)1623(9)9=323(4)6(3)=128318=743∫916x dx=∫916x12 dx=23x32|916=23xx|916=23(16)16−23(9)9=323(4)−6(3)=1283−18=743

Related Posts

0 Response to "Exercise Zone : Integral Tentu (Definite Integral)"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel