Exercise Zone : Integral Tentu [2]

Berikut ini adalah kumpulan soal mengenai integral tentu tingkat dasar. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Terima kasih.


No. 11

Jika nilai 12f(x) dx=10\displaystyle\intop_1^2f(x)\ dx=10, maka nilai 01xf(x2+1) dx\displaystyle\intop_0^1x\cdot f\left(x^2+1\right)\ dx adalah
  1. 33
  2. 44
  3. 55
  1. 66
  2. 77
Misal u=x2+1u=x^2+1
du=2x dx12du=x dxdu=2x dx12du=x dx

x=0u=02+1=1x=0\rightarrow u=0^2+1=1
x=1u=12+1=2x=1\rightarrow u=1^2+1=2

01xf(x2+1) dx=1212f(u) du=12(10)=5∫01x⋅f(x2+1) dx=12∫12f(u) du=12(10)=5

No. 12

Hasil dari 242x3+6x22x5 dx={\displaystyle\intop_2^42x^3+6x^2-2x-5\ dx=} ....
242x3+6x22x5 dx=[24x4+63x322x25x]24=[12x4+2x3x25x]24=(12(4)4+2(4)3(4)25(4))(12(2)4+2(2)3(2)25(2))=(8+1281620)(8+16410)=10020=80∫242x3+6x2−2x−5 dx=[24x4+63x3−22x2−5x]24=[12x4+2x3−x2−5x]24=(12(4)4+2(4)3−(4)2−5(4))−(12(2)4+2(2)3−(2)2−5(2))=(8+128−16−20)−(8+16−4−10)=100−20=80

No. 13

Nilai 14(3x2) dx={\displaystyle\intop_1^4\left(3\sqrt{x}-2\right)\ dx=} ....
  1. 22
  2. 44
  3. 66
  1. 77
  2. 88
14(3x2) dx=14(3x122) dx=323x322x14=2xx2x14=(2(4)42(4))(2(1)12(1))=(8(2)8)(2(1)2)=(168)(22)=80=8∫14(3x−2) dx=∫14(3x12−2) dx=3⋅23x32−2x|14=2xx−2x|14=(2(4)4−2(4))−(2(1)1−2(1))=(8(2)−8)−(2(1)−2)=(16−8)−(2−2)=8−0=8

No. 14

Nilai 142xx dx={\displaystyle\intop_1^4\dfrac2{x\sqrt{x}}\ dx=} ....
  1. 12-12
  2. 4-4
  3. 3-3
  1. 22
  2. 32\dfrac32
142xx dx=142xx12 dx=142x32 dx=142x32 dx=2(21x12)14=4x1214=4x14=(44)(41)=42+41=2+4=2∫142xx dx=∫142x⋅x12 dx=∫142x32 dx=∫142x−32 dx=2(−21x−12)|14=−4x12|14=−4x|14=(−44)−(−41)=−42+41=−2+4=2

No. 15

Hasil 13(x2+16) dx={\displaystyle\intop_1^3\left(x^2+\dfrac16\right)\ dx=} ....
  1. 9139\dfrac13
  2. 99
  3. 88
  1. 103\dfrac{10}3
  2. 33
13(x2+16) dx=13x3+16x13=(13(3)3+16(3))(13(1)3+16(1))=(9+12)(13+16)=9+1236=9+1212=9∫13(x2+16) dx=13x3+16x|13=(13(3)3+16(3))−(13(1)3+16(1))=(9+12)−(13+16)=9+12−36=9+12−12=9

No. 16

Hasil 02x2(x+2) dx={\displaystyle\intop_0^2x^2\left(x+2\right)\ dx=} ....
  1. 66
  2. 6136\dfrac13
  3. 6236\dfrac23
  1. 9139\dfrac13
  2. 2020
02x2(x+2) dx=02(x3+2x2) dx=14x4+23x302=(14(2)4+23(2)3)(14(0)4+23(0)3)=(4+163)0=4+513=913∫02x2(x+2) dx=∫02(x3+2x2) dx=14x4+23x3|02=(14(2)4+23(2)3)−(14(0)4+23(0)3)=(4+163)−0=4+513=913


Related Posts

0 Response to "Exercise Zone : Integral Tentu [2]"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel