Exercise Zone : Bentuk Akar

Berikut ini adalah kumpulan soal mengenai bentuk akar tingkat dasar. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Terima kasih.

No. 1

Pecahan 5+322+35\dfrac{\sqrt5+\sqrt3-\sqrt2}{\sqrt2+\sqrt3-\sqrt5} setara dengan....
  1. 60+62\dfrac{\sqrt{60}+\sqrt6}2
  2. 10+62\dfrac{\sqrt{10}+\sqrt6}2
  3. 15+32\dfrac{\sqrt{15}+\sqrt3}2
  1. 1532\dfrac{\sqrt{15}-\sqrt3}2
  2. 15+62\dfrac{\sqrt{15}+\sqrt6}2
5+322+35=5+322+352+3+52+3+5=10+15+5+6+3+152610(2+3)25=215+62+26+35=215+626=15+3666=90+366=310+366=10+62\begin{aligned}\dfrac{\sqrt5+\sqrt3-\sqrt2}{\sqrt2+\sqrt3-\sqrt5}&=\dfrac{\sqrt5+\sqrt3-\sqrt2}{\sqrt2+\sqrt3-\sqrt5}\cdot\dfrac{\sqrt2+\sqrt3+\sqrt5}{\sqrt2+\sqrt3+\sqrt5}\\[8pt]&=\dfrac{\sqrt{10}+\sqrt{15}+5+\sqrt6+3+\sqrt{15}-2-\sqrt6-\sqrt{10}}{\left(\sqrt2+\sqrt3\right)^2-5}\\[8pt]&=\dfrac{2\sqrt{15}+6}{2+2\sqrt6+3-5}\\[8pt]&=\dfrac{2\sqrt{15}+6}{2\sqrt6}\\[8pt]&=\dfrac{\sqrt{15}+3}{\sqrt6}\cdot\dfrac{\sqrt6}{\sqrt6}\\[8pt]&=\dfrac{\sqrt{90}+3\sqrt6}6\\[8pt]&=\dfrac{3\sqrt{10}+3\sqrt6}6\\&=\boxed{\boxed{\dfrac{\sqrt{10}+\sqrt6}2}}\end{aligned}

No. 2

Bentuk sederhana dari 23+427432{\dfrac{2\sqrt3+4\sqrt{27}-4\sqrt3}{\sqrt2}} adalah....
23+427432=23+433432=23+123432=103222=1062=56\begin{aligned}\dfrac{2\sqrt3+4\sqrt{27}-4\sqrt3}{\sqrt2}&=\dfrac{2\sqrt3+4\cdot3\sqrt3-4\sqrt3}{\sqrt2}\\[4pt]&=\dfrac{2\sqrt3+12\sqrt3-4\sqrt3}{\sqrt2}\\[4pt]&=\dfrac{10\sqrt3}{\sqrt2}\cdot\dfrac{\sqrt2}{\sqrt2}\\[4pt]&=\dfrac{10\sqrt6}2\\[4pt]&=\boxed{\boxed{5\sqrt6}}\end{aligned}

No. 3

Bentuk sederhana dari 4200+2242+550102-4\sqrt{200}+2\sqrt{242}+5\sqrt{50}-10\sqrt2 adalah ....
  1. 32-3\sqrt2
  2. 22-2\sqrt2
  3. 2\sqrt2
  1. 222\sqrt2
  2. 323\sqrt2
4200+2242+550102=4102+2112+552102=402+222+252102=32\begin{aligned}-4\sqrt{200}+2\sqrt{242}+5\sqrt{50}-10\sqrt2&=-4\cdot10\sqrt2+2\cdot11\sqrt2+5\cdot5\sqrt2-10\sqrt2\\&=-40\sqrt2+22\sqrt2+25\sqrt2-10\sqrt2\\&=-3\sqrt2\end{aligned}

No. 4

Jika r=20225(10+202)(22)r=\dfrac{20\sqrt2-25}{\left(10+20\sqrt2\right)\left(2-\sqrt2\right)}, maka (4r2)2=(4r-2)^2= ....
  1. 55
  2. 44
  3. 33
  1. 22
  2. 11
r=20225(10+202)(22)=5(425)10(1+22)(22)=4252(1+22)(22)=4252(22+424)=24+82152102(184)=14722(14)=222(2)=224\begin{aligned}r&=\dfrac{20\sqrt2-25}{\left(10+20\sqrt2\right)\left(2-\sqrt2\right)}\\&=\dfrac{5\left(4\sqrt2-5\right)}{10\left(1+2\sqrt2\right)\left(2-\sqrt2\right)}\\&=\dfrac{4\sqrt2-5}{2\left(1+2\sqrt2\right)\left(2-\sqrt2\right)}\\&=\dfrac{4\sqrt2-5}{2\left(2-\sqrt2+4\sqrt2-4\right)}\\&=\dfrac{24+8\sqrt2-15\sqrt2-10}{2(18-4)}\\&=\dfrac{14-7\sqrt2}{2(14)}\\&=\dfrac{2-\sqrt2}{2(2)}\\&=\dfrac{2-\sqrt2}4\end{aligned}

(4r2)2=(4(224)2)2=(222)2=(2)2=2\begin{aligned}(4r-2)^2&=\left(4\left(\dfrac{2-\sqrt2}4\right)-2\right)^2\\&=\left(2-\sqrt2-2\right)^2\\&=\left(-\sqrt2\right)^2\\&=2\end{aligned}

No. 5

Jika 3p=2,373p=\sqrt{2,37} maka nilai 237\sqrt{237} adalah....
237=2,37100=2,3710=3p10=30p\begin{aligned}\sqrt{237}&=\sqrt{2,37\cdot100}\\&=\sqrt{2,37}\cdot10\\&=3p\cdot10\\&=\boxed{\boxed{30p}}\end{aligned}

No. 6

Jika 552510=b{\dfrac{5-5\sqrt2}{\sqrt5-\sqrt{10}}=b}, maka b ⁣log125=^b\negmedspace\log125=
  1. 22
  2. 33
  3. 44
  1. 55
  2. 66
552510=5(12)5(12)=5555=555b=5\begin{aligned}\dfrac{5-5\sqrt2}{\sqrt5-\sqrt{10}}&=\dfrac{5\left(1-\sqrt2\right)}{\sqrt5\left(1-\sqrt2\right)}\\[8pt]&=\dfrac5{\sqrt5}\cdot\dfrac{\sqrt5}{\sqrt5}\\[8pt]&=\dfrac{5\sqrt5}5\\[8pt]b&=\sqrt5\end{aligned}

Math input error

No. 7

3+222={\sqrt{3+2\sqrt2}-\sqrt2=} ....
  1. 424\sqrt2
  2. 3+2{3+\sqrt2}
  3. 2\sqrt2
  1. 11
  2. 00
3+222=2+1+2212=2+12=1\begin{aligned}\sqrt{3+2\sqrt2}-\sqrt2&=\sqrt{2+1+2\sqrt{2\cdot1}}-\sqrt2\\&=\cancel{\sqrt2}+\sqrt1-\cancel{\sqrt2}\\&=\boxed{\boxed{1}}\end{aligned}

No. 8

Bentuk sederhana dari (3+7)(37)2542\dfrac{\left(\sqrt3+\sqrt7\right)\left(\sqrt3-\sqrt7\right)}{2\sqrt5-4\sqrt2} adalah
  1. 23(5+22)\dfrac23\left(\sqrt5+2\sqrt2\right)
  2. 23(225)\dfrac23\left(2\sqrt2-\sqrt5\right)
  3. 23(25+42)-\dfrac23\left(2\sqrt5+4\sqrt2\right)
  1. 49(25+42)-\dfrac49\left(2\sqrt5+4\sqrt2\right)
  2. 49(252)-\dfrac49\left(2\sqrt5-\sqrt2\right)
(3+7)(37)2542=372542×25+4225+42=4(25+42)2032=4(25+42)12=25+423=2(5+22)3=23(5+22)

Related Posts

0 Response to "Exercise Zone : Bentuk Akar"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel