Exercise Zone : Teorema Sisa (Remainder Theorem)

Berikut ini adalah kumpulan soal mengenai Teorema Sisa Tingkat Dasar. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Terima kasih.


No. 1

Diketahui suku banyak P(x)=2x4+ax33x2+5x+b{P(x) = 2x^4 + ax^3-3x^2 + 5x + b}. Jika P(x)P(x) dibagi (x1){(x − 1)} sisa 1111, dibagi (x+1){(x + 1)} sisa 1-1, maka nilai (2a+b)={(2a + b) =}
  1. 1313
  2. 1010
  3. 88
  1. 77
  2. 66
P(1)=112(1)4+a(1)33(1)2+5(1)+b=112+a3+5+b=11a+b=7\begin{aligned} P(1)&=11\\ 2(1)^4 + a(1)^3-3(1)^2 + 5(1) + b&=11\\ 2 + a-3+ 5+ b&=11\\ a+b&=7 \end{aligned}

P(1)=12(1)4+a(1)33(1)2+5(1)+b=12a35+b=1a+b=5\begin{aligned}P(-1)&=-1\\ 2(-1)^4 + a(-1)^3-3(-1)^2 + 5(-1) + b&=-1\\ 2 -a-3-5+ b&=-1\\ -a+b&=5 \end{aligned}

CARA BIASACARA CEPAT
a+b=7a+b=5+2b=12b=6\begin{aligned} a+b&=7\\ -a+b&=5\qquad&+\\\hline 2b&=12\\ b&=6\end{aligned}

a+b=7a+6=7a=1\begin{aligned} a+b&=7\\ a+6&=7\\ a&=1 \end{aligned}

2a+b=2(1)+6=2+6=8\begin{aligned} 2a+b&=2(1)+6\\ &=2+6\\ &=\boxed{\boxed{8}} \end{aligned}
a+b=7×3a+b=5×1\begin{aligned} a+b&=7\qquad&\times3\\ -a+b&=5\qquad&\times-1\end{aligned}

3a+3b=21ab=5+4a+2b=162a+b=8\begin{aligned} 3a+3b&=21\\ a-b&=-5\qquad&+\\\hline 4a+2b&=16\\ 2a+b&=\boxed{\boxed{8}} \end{aligned}

No. 2

Jika f(x)f(x) dibagi (x3){(x-3)} sisanya 55 sedangkan jika dibagi (x+1){(x+1)} sisanya 11. Jika f(x)f(x) dibagi dengan x22x3{x^2-2x-3} sisanya adalah
  1. x+2{x+2}
  2. 2x+3{2x+3}
  3. 3x1{3x-1}
  1. 2x+1{2x+1}
  2. x+3{x+3}
f(3)=5f(3)=5
f(1)=1f(-1)=1
Misal f(x)f(x) dibagi x22x3x^2-2x-3 sisanya adalah ax+bax+b

x22x3(x3)(x+1)x^2-2x-3(x-3)(x+1)

f(3)=3a+b=5f(3)=3a+b=5
f(1)=a+b=1f(-1)=-a+b=1

3a+b=5a+b=14a=4a=1\begin{aligned} 3a+b&=5\\ -a+b&=1&\qquad-\\\hline 4a&=4\\ a&=1 \end{aligned}

a+b=11+b=1b=2\begin{aligned} -a+b&=1\\ -1+b&=1\\ b&=2 \end{aligned}

No. 3

Jika f(x)=ax3+2bx2bx+2{f(x)=ax^3+2bx^2-bx+2} dibagi dengan (x1){(x-1)} sisanya 33, sedangkan jika dibagi dengan (x2){(x-2)} sisanya 4-4. Nilai 2a+b{2a+b} adalah
  1. 55
  2. 5-5
  3. 7-7
  1. 12-12
  2. 11
f(1)=3a(1)3+2b(1)2b(1)+2=3a+2bb+2=3a+b=1\begin{aligned} f(1)&=3\\ a(1)^3+2b(1)^2-b(1)+2&=3\\ a+2b-b+2&=3\\ a+b&=1 \end{aligned}

f(2)=4a(2)3+2b(2)2b(2)+2=48a+8b2b+2=48a+6b=64a+3b=3\begin{aligned} f(2)&=-4\\ a(2)^3+2b(2)^2-b(2)+2&=-4\\ 8a+8b-2b+2&=-4\\ 8a+6b&=-6\\ 4a+3b&=-3 \end{aligned}

a+b=1×34a+3b=3\begin{aligned} a+b&=1\qquad&\color{red}{\times3}\\ 4a+3b&=-3 \end{aligned}

3a+3b=34a+3b=3a=6a=6\begin{aligned} 3a+3b&=3\\ 4a+3b&=-3\qquad-\\\hline -a&=6\\ a&=-6 \end{aligned}

a+b=16+b=1b=7\begin{aligned} a+b&=1\\ -6+b&=1\\ b&=7 \end{aligned}

2a+b=2(6)+7=12+7=5\begin{aligned} 2a+b&=2(-6)+7\\ &=-12+7\\ &=\boxed{\boxed{-5}} \end{aligned}

No. 4

Jika f(x)=ax3+3bx2+(2ab)x+4{f(x)=ax^3+3bx^2+(2a-b)x+4} dibagi dengan (x1){(x-1)} sisanya 1010, sedangkan jika dibagi dengan (x+2){(x+2)} sisanya 22. Nilai a+b{a+b} adalah
  1. 11
  2. 43\dfrac43
  3. 73\dfrac73
  1. 22
  2. 33
f(1)=10a(1)3+3b(1)2+(2ab)(1)+4=10a+3b+2ab+4=103a+2b=6\begin{aligned} f(1)&=10\\ a(1)^3+3b(1)^2+(2a-b)(1)+4&=10\\ a+3b+2a-b+4&=10\\ 3a+2b&=6 \end{aligned}

f(2)=2a(2)3+3b(2)2+(2ab)(2)+4=28a+12b4a+2b+4=212a+14b=26a7b=1\begin{aligned} f(-2)&=2\\ a(-2)^3+3b(-2)^2+(2a-b)(-2)+4&=2\\ -8a+12b-4a+2b+4&=2\\ -12a+14b&=-2\\ 6a-7b&=1 \end{aligned}

3a+2b=6×26a7b=1\begin{aligned} 3a+2b&=6\qquad&\color{red}{\times2}\\ 6a-7b&=1 \end{aligned}

6a+4b=126a7b=111b=11b=1\begin{aligned} 6a+4b&=12\\ 6a-7b&=1\qquad-\\\hline 11b&=11\\ b&=1 \end{aligned}

3a+2b+b=6+13a+3b=7a+b=73\begin{aligned} 3a+2b+b&=6+1\\ 3a+3b&=7\\ a+b&=\boxed{\boxed{\dfrac73}} \end{aligned}

No. 5

Suku banyak f(x)f(x) dibagi (x+1){(x+1)} sisanya 2-2 dan dibagi (x3){(x-3)} sisa 77, suku banyak g(x)g(x) dibagi (x+1){(x+1)} sisa 33 dan dibagi (x3){(x-3)} sisa 22. Diketahui h(x)=f(x)g(x){h(x)=f(x)\cdot g(x)}, jika h(x)h(x) dibagi (x22x3)\left(x^2-2x-3\right) sisanya adalah
  1. S(x)=3x1S(x)=3x-1
  2. S(x)=4x1S(x)=4x-1
  3. S(x)=5x1S(x)=5x-1
  1. S(x)=6x1S(x)=6x-1
  2. S(x)=7x+2S(x)=7x+2
f(1)=2f(-1)=-2
f(3)=7f(3)=7
g(1)=3g(-1)=3
g(3)=2g(3)=2

Misal sisanya adalah ax+bax+b

x22x3=(x+1)(x3)x^2-2x-3=(x+1)(x-3)

h(1)=a(1)+b=f(1)g(1)a+b=(2)(3)a+b=6\begin{aligned} h(-1)=a(-1)+b&=f(-1)g(-1)\\ -a+b&=(-2)(3)\\ -a+b&=-6 \end{aligned}

h(3)=a(3)+b=f(3)g(3)3a+b=(7)(2)3a+b=14\begin{aligned} h(3)=a(3)+b&=f(3)g(3)\\ 3a+b&=(7)(2)\\ 3a+b&=14 \end{aligned}

3a+b=14a+b=64a=20a=5\begin{aligned} 3a+b&=14\\ -a+b&=-6\qquad&-\\\hline 4a&=20\\ a&=5 \end{aligned}

a+b=65+b=6b=1\begin{aligned} -a+b&=-6\\ -5+b&=-6\\ b&=-1 \end{aligned}

Related Posts

0 Response to "Exercise Zone : Teorema Sisa (Remainder Theorem)"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel