Exercise Zone : Perkalian Titik pada Vektor (Dot Product) Written By Anonymous Sunday, March 22, 2020 Add Comment Edit Berikut ini adalah kumpulan soal mengenai Perkalian Titik pada Vektor tingkat Dasar. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Terima kasih. No. 1Diketahui a⃗=3j⃗−2k⃗{\vec{a}=3\vec{j}-2\vec{k}}a=3j−2k, b⃗=4i⃗−2j⃗+k⃗{\vec{b}=4\vec{i}-2\vec{j}+\vec{k}}b=4i−2j+k dan c⃗=5i⃗+j⃗+2k⃗{\vec{c}=5\vec{i}+\vec{j}+2\vec{k}}c=5i+j+2k. Tentukan a⃗(b⃗+c⃗)\vec{a}\left(\vec{b}+\vec{c}\right)a(b+c)! Penyelesaiana⃗=(03−2)\vec{a}=(03−2)a=(03−2) b⃗=(4−21)\vec{b}=(4−21)b=(4−21) c⃗=(512)\vec{c}=(512)c=(512) Related:SBMPTN Zone : KubusExercise Zone : KubusExercise Zone : Sistem Persamaan a→(b→+c→)=(03−2)⋅((4−21)+(512))=(03−2)⋅(9−13)=(0)(9)+(3)(−1)+(−2)(3)=0−3−6=−9a→(b→+c→)=(03−2)⋅((4−21)+(512))=(03−2)⋅(9−13)=(0)(9)+(3)(−1)+(−2)(3)=0−3−6=−9a→(b→+c→)=(03−2)⋅((4−21)+(512))=(03−2)⋅(9−13)=(0)(9)+(3)(−1)+(−2)(3)=0−3−6=−9 Share this post Related PostsExercise Zone : Persamaan Eksponen Exercise Zone : Pangkat (Eksponen)SBMPTN Zone : Fungsi EksponenSBMPTN Zone : Persamaan EksponenSBMPTN Zone : Jumlah dan Selisih TrigonometriSBMPTN Zone : LogaritmaExercise Zone : Bentuk AkarSBMPTN Zone : Fungsi Komposisi (Composite Function)
0 Response to "Exercise Zone : Perkalian Titik pada Vektor (Dot Product)"
Post a Comment