Exercise Zone : Fungsi Komposisi (Composite Function)

Berikut ini adalah kumpulan soal mengenai Fungsi Komposisi. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Terima kasih.

No. 1

Diketahui {f(x)=2x-3} dan {\left(g\circ f\right)(x)=2x+1}. Tentukan nilai g(x).
\(\begin{aligned} \left(g\circ f\right)(x)&=2x+1\\ g\left(f(x)\right)&=2x+1\\ g(2x-3)&=2x+1 \end{aligned}\)
CARA BIASACARA CEPAT
Misal 2x-3=u
\(\begin{aligned} 2x&=u+3\\ x&=\dfrac{u+3}2 \end{aligned}\)

\(\begin{aligned} g(2x-3)&=2x+1\\ g(u)&=2\left(\dfrac{u+3}2\right)+1\\[8pt] &=u+3+1\\ &=u+4\\ g(x)&=\boxed{\boxed{x+4}}\end{aligned}\)
\(\begin{aligned} g(2x-3)&=2x+1\\ g(2x-3)&=2x{\color{blue}{-3+3}}+1\\ g({\color{blue}{2x-3}})&={\color{blue}{2x-3}}+4\\ g(x)&=\boxed{\boxed{x+4}} \end{aligned}\)

No. 2

Jika {f(x)=5x+3} dan {g(f(x))=4x+9}, nilai g(13) adalah....
  1. 13
  2. 14
  3. 15
  1. 16
  2. 17
\(\begin{aligned} f(x)&=13\\ 5x+3&=13\\ 5x&=10\\ x&=2 \end{aligned}\)

\(\begin{aligned} g(f(x))&=4x+9\\ g(13)&=4(2)+9\\ &=17 \end{aligned}\)

No. 3

Diketahui {f(x)=2x+3} dan {\left(g\circ f\right)(x)=4x^2+16x+16}. Rumus fungsi g(x) adalah ....
  1. x^2-2x
  2. x^2-2x-1
  3. x^2-2x+1
  1. x^2+2x+1
  2. x^2+2x-1
\(\begin{aligned} \left(g\circ f\right)(x)&=4x^2+16x+16\\ g(f(x))&=4x^2+16x+16\\ g(2x+3)&=4x^2+16x+16 \end{aligned}\)

Misal t=2x+3
\(\begin{aligned} t-3&=2x\\ \dfrac{t-3}2&=x\\ x&=\dfrac{t-3}2 \end{aligned}\)

\(\begin{aligned} g(t)&=4\left(\dfrac{t-3}2\right)^2+16\left(\dfrac{t-3}2\right)+16\\ &=4\left(\dfrac{t^2-6t+9}4\right)+8(t-3)+16\\ &=t^2-6t+9+8t-24+16\\ &=t^2+2t+1\\ g(x)&=\boxed{\boxed{x^2+2x+1}} \end{aligned}\)

No. 4

Jika {g(x)=x-2} dan {(g\circ f)(x)=x^2+2x+3}, maka (f\circ g)(3) adalah ....
  1. 5
  2. 6
  3. 7
  1. 8
  2. 9
\(\begin{aligned} (f\circ g)(3)&=f(g(3))\\ &=f(3-2)\\ &=f(1) \end{aligned}\)

\(\begin{aligned} (g\circ f)(1)&=1^2+2(1)+3\\ g(f(1))&=1+2+3\\ f(1)-2&=6\\ f(1)&=8 \end{aligned}\)

No. 5

Diketahui {f:R\to R}, {g:R\to R}, {g(x)=2x+3} dan {\left(f\circ g\right)(x)=12x^2+32x+26}. Rumus f(x)= ....
  1. {3x^2-2x+5}
  2. {3x^2-2x+37}
  3. {3x^2-2x+50}
  1. {3x^2+2x-5}
  2. {3x^2+2x-50}
\(\begin{aligned} \left(f\circ g\right)(x)&=12x^2+32x+26\\ f\left(g(x)\right)&=12x^2+32x+26\\ f\left(2x+3\right)&=12x^2+32x+26 \end{aligned}\)

Misal
\(\begin{aligned} 2x+3&=u\\ 2x&=u-3\\ x&=\dfrac{u-3}2 \end{aligned}\)

\(\begin{aligned} f\left(u\right)&=12\left(\dfrac{u-3}2\right)^2+32\left(\dfrac{u-3}2\right)+26\\[8pt] &=12\left(\dfrac{u^2-6u+9}4\right)+16\left(u-3\right)+26\\[8pt] &=3\left(u^2-6u+9\right)+16u-48+26\\ &=3u^2-18u+27+16u-22\\ &=3u^2-2u+5\\ f(x)&=\boxed{\boxed{3x^2-2x+5}} \end{aligned}\)

No. 6

Jika {f(x)=\dfrac3{2x-1}} dan {\left(f\circ g\right)(x)=\dfrac{3x+3}{x-1}}, maka {g(x-1)=}
  1. \dfrac{x+2}x, x\neq0
  2. \dfrac{x-2}x, x\neq0
  3. \dfrac{x+1}x, x\neq0
  1. \dfrac{x-1}x, x\neq0
  2. \dfrac{x}{x+1}, x\neq-1
\(\begin{aligned} \left(f\circ g\right)(x)&=\dfrac{3x+3}{x-1}\\[8pt] f\left( g(x)\right)&=\dfrac{3x+3}{x-1}\\[8pt] \dfrac3{2g(x)-1}&=\dfrac{3x+3}{x-1}\\[8pt] \left(2g(x)-1\right)(3x+3)&=3(x-1)\\ 2(3x+3)g(x)-3x-3&=3x-3\\ (6x+6)g(x)&=6x\\ g(x)&=\dfrac{6x}{6x+6}\color{red}\dfrac{:6}{:6}\\[8pt] &=\dfrac{x}{x+1}\\[8pt] g(x-1)&=\dfrac{x-1}{x-1+1}\\ &=\boxed{\boxed{\dfrac{x-1}x}} \end{aligned}\)

No. 7

Jika tabel berikut menyatakan hasil fungsi f dan g
x0123
f(x)131-1
g(x)2012
maka nilai {(f\circ g\circ f)(0)+(g\circ f\circ g)(1)=}
  1. 4
  2. 3
  3. 2
  1. 1
  2. 0
\(\eqalign{ (f\circ g\circ f)(0)+(g\circ f\circ g)(1)&=f(g(f(0)))+g(f(g(1)))\\ &=f(g(1))+g(f(0))\\ &=f(0)+g(1)\\ &=1+0\\ &=\boxed{\boxed{1}} }\)

0 Response to "Exercise Zone : Fungsi Komposisi (Composite Function)"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel