Exercise Zone : Fungsi Komposisi (Composite Function)

Berikut ini adalah kumpulan soal mengenai Fungsi Komposisi. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Terima kasih.

No. 1

Diketahui f(x)=2x3{f(x)=2x-3} dan (gf)(x)=2x+1{\left(g\circ f\right)(x)=2x+1}. Tentukan nilai g(x)g(x).
(gf)(x)=2x+1g(f(x))=2x+1g(2x3)=2x+1\begin{aligned}\left(g\circ f\right)(x)&=2x+1\\g\left(f(x)\right)&=2x+1\\g(2x-3)&=2x+1\end{aligned}
CARA BIASACARA CEPAT
Misal 2x3=u2x-3=u
2x=u+3x=u+32\begin{aligned}2x&=u+3\\x&=\dfrac{u+3}2\end{aligned}

g(2x3)=2x+1g(u)=2(u+32)+1=u+3+1=u+4g(x)=x+4\begin{aligned}g(2x-3)&=2x+1\\g(u)&=2\left(\dfrac{u+3}2\right)+1\\[8pt]&=u+3+1\\&=u+4\\g(x)&=\boxed{\boxed{x+4}}\end{aligned}
g(2x3)=2x+1g(2x3)=2x3+3+1g(2x3)=2x3+4g(x)=x+4\begin{aligned}g(2x-3)&=2x+1\\g(2x-3)&=2x{\color{blue}{-3+3}}+1\\g({\color{blue}{2x-3}})&={\color{blue}{2x-3}}+4\\g(x)&=\boxed{\boxed{x+4}}\end{aligned}

No. 2

Jika f(x)=5x+3{f(x)=5x+3} dan g(f(x))=4x+9{g(f(x))=4x+9}, nilai g(13)g(13) adalah....
  1. 1313
  2. 1414
  3. 1515
  1. 1616
  2. 1717
f(x)=135x+3=135x=10x=2\begin{aligned}f(x)&=13\\5x+3&=13\\5x&=10\\x&=2\end{aligned}

g(f(x))=4x+9g(13)=4(2)+9=17\begin{aligned}g(f(x))&=4x+9\\g(13)&=4(2)+9\\&=17\end{aligned}

No. 3

Diketahui f(x)=2x+3{f(x)=2x+3} dan (gf)(x)=4x2+16x+16{\left(g\circ f\right)(x)=4x^2+16x+16}. Rumus fungsi g(x)g(x) adalah ....
  1. x22xx^2-2x
  2. x22x1x^2-2x-1
  3. x22x+1x^2-2x+1
  1. x2+2x+1x^2+2x+1
  2. x2+2x1x^2+2x-1
(gf)(x)=4x2+16x+16g(f(x))=4x2+16x+16g(2x+3)=4x2+16x+16\begin{aligned}\left(g\circ f\right)(x)&=4x^2+16x+16\\g(f(x))&=4x^2+16x+16\\g(2x+3)&=4x^2+16x+16\end{aligned}

Misal t=2x+3t=2x+3
t3=2xt32=xx=t32\begin{aligned}t-3&=2x\\\dfrac{t-3}2&=x\\x&=\dfrac{t-3}2\end{aligned}

g(t)=4(t32)2+16(t32)+16=4(t26t+94)+8(t3)+16=t26t+9+8t24+16=t2+2t+1g(x)=x2+2x+1\begin{aligned}g(t)&=4\left(\dfrac{t-3}2\right)^2+16\left(\dfrac{t-3}2\right)+16\\&=4\left(\dfrac{t^2-6t+9}4\right)+8(t-3)+16\\&=t^2-6t+9+8t-24+16\\&=t^2+2t+1\\g(x)&=\boxed{\boxed{x^2+2x+1}}\end{aligned}

No. 4

Jika g(x)=x2{g(x)=x-2} dan (gf)(x)=x2+2x+3{(g\circ f)(x)=x^2+2x+3}, maka (fg)(3)(f\circ g)(3) adalah ....
  1. 55
  2. 66
  3. 77
  1. 88
  2. 99
(fg)(3)=f(g(3))=f(32)=f(1)\begin{aligned}(f\circ g)(3)&=f(g(3))\\&=f(3-2)\\&=f(1)\end{aligned}

(gf)(1)=12+2(1)+3g(f(1))=1+2+3f(1)2=6f(1)=8\begin{aligned}(g\circ f)(1)&=1^2+2(1)+3\\g(f(1))&=1+2+3\\f(1)-2&=6\\f(1)&=8\end{aligned}

No. 5

Diketahui f:RR{f:R\to R}, g:RR{g:R\to R}, g(x)=2x+3{g(x)=2x+3} dan (fg)(x)=12x2+32x+26{\left(f\circ g\right)(x)=12x^2+32x+26}. Rumus f(x)=f(x)= ....
  1. 3x22x+5{3x^2-2x+5}
  2. 3x22x+37{3x^2-2x+37}
  3. 3x22x+50{3x^2-2x+50}
  1. 3x2+2x5{3x^2+2x-5}
  2. 3x2+2x50{3x^2+2x-50}
(fg)(x)=12x2+32x+26f(g(x))=12x2+32x+26f(2x+3)=12x2+32x+26\begin{aligned}\left(f\circ g\right)(x)&=12x^2+32x+26\\f\left(g(x)\right)&=12x^2+32x+26\\f\left(2x+3\right)&=12x^2+32x+26\end{aligned}

Misal
2x+3=u2x=u3x=u32\begin{aligned}2x+3&=u\\2x&=u-3\\x&=\dfrac{u-3}2\end{aligned}

f(u)=12(u32)2+32(u32)+26=12(u26u+94)+16(u3)+26=3(u26u+9)+16u48+26=3u218u+27+16u22=3u22u+5f(x)=3x22x+5\begin{aligned}f\left(u\right)&=12\left(\dfrac{u-3}2\right)^2+32\left(\dfrac{u-3}2\right)+26\\[8pt]&=12\left(\dfrac{u^2-6u+9}4\right)+16\left(u-3\right)+26\\[8pt]&=3\left(u^2-6u+9\right)+16u-48+26\\&=3u^2-18u+27+16u-22\\&=3u^2-2u+5\\f(x)&=\boxed{\boxed{3x^2-2x+5}}\end{aligned}

No. 6

Jika f(x)=32x1{f(x)=\dfrac3{2x-1}} dan (fg)(x)=3x+3x1{\left(f\circ g\right)(x)=\dfrac{3x+3}{x-1}}, maka g(x1)={g(x-1)=}
  1. x+2x\dfrac{x+2}x, x0x\neq0
  2. x2x\dfrac{x-2}x, x0x\neq0
  3. x+1x\dfrac{x+1}x, x0x\neq0
  1. x1x\dfrac{x-1}x, x0x\neq0
  2. xx+1\dfrac{x}{x+1}, x1x\neq-1
(fg)(x)=3x+3x1f(g(x))=3x+3x132g(x)1=3x+3x1(2g(x)1)(3x+3)=3(x1)2(3x+3)g(x)3x3=3x3(6x+6)g(x)=6xg(x)=6x6x+6:6:6=xx+1g(x1)=x1x1+1=x1x\begin{aligned}\left(f\circ g\right)(x)&=\dfrac{3x+3}{x-1}\\[8pt]f\left( g(x)\right)&=\dfrac{3x+3}{x-1}\\[8pt]\dfrac3{2g(x)-1}&=\dfrac{3x+3}{x-1}\\[8pt]\left(2g(x)-1\right)(3x+3)&=3(x-1)\\2(3x+3)g(x)-3x-3&=3x-3\\(6x+6)g(x)&=6x\\g(x)&=\dfrac{6x}{6x+6}\color{red}\dfrac{:6}{:6}\\[8pt]&=\dfrac{x}{x+1}\\[8pt]g(x-1)&=\dfrac{x-1}{x-1+1}\\&=\boxed{\boxed{\dfrac{x-1}x}}\end{aligned}

No. 7

Jika tabel berikut menyatakan hasil fungsi ff dan gg
xx00112233
f(x)f(x)1133111-1
g(x)g(x)22001122
maka nilai (fgf)(0)+(gfg)(1)={(f\circ g\circ f)(0)+(g\circ f\circ g)(1)=}
  1. 44
  2. 33
  3. 22
  1. 11
  2. 00
(fgf)(0)+(gfg)(1)=f(g(f(0)))+g(f(g(1)))=f(g(1))+g(f(0))=f(0)+g(1)=1+0=1

Related Posts

0 Response to "Exercise Zone : Fungsi Komposisi (Composite Function)"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel